当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing 3D Crosslinked Macromolecular Networks as a Highly Efficient Interface Layer for Ultra-Stable Zn Metal Anodes
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-20 , DOI: 10.1002/adma.202413370 Yi-Fan Qu, Jia-Wei Qian, Feng Zhang, Zibo Zhu, Yinbo Zhu, Zhiguo Hou, Qiangqiang Meng, Kai Chen, Shi Xue Dou, Li-Feng Chen
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-20 , DOI: 10.1002/adma.202413370 Yi-Fan Qu, Jia-Wei Qian, Feng Zhang, Zibo Zhu, Yinbo Zhu, Zhiguo Hou, Qiangqiang Meng, Kai Chen, Shi Xue Dou, Li-Feng Chen
Aqueous zinc ion batteries (AZIBs) are experiencing rapid development due to their high theoretical capacity, abundant zinc resources, and intrinsic safety. However, the progress of AZIBs is hindered by uncontrollable parasitic reactions and excessive dendrite growth, which compromise the durability and effective utilization of zinc metal anodes. To address these challenges, the study has constructed a 3D crosslinked macromolecular network composed of zinc ion-bonded potato starch (StZ) as an interface layer on Zn foil (StZ-Zn) to inhibit hydrogen evolution, regulate Zn2+ flux, and ensure uniform Zn deposition. Density functional theory calculations, molecular dynamics simulations, COMSOL Multiphysics simulations, and in situ Raman spectra demonstrate that the 3D StZ interface layer facilitates Zn2+ desolvation by restructuring the solvation shells. This process reduces the concentration of H2O at the anode, thereby inhibiting the hydrogen evolution reaction. Consequently, Zn2+ transport is more efficient, promoting a homogeneous Zn2+ flux and enabling dendrite-free Zn deposition. As a result, StZ-Zn||StZ-Zn symmetric cell delivers a superb lifespan of 4800 h at the current density of 5 mA cm−2, and the corresponding cumulative capacity is as high as 12000 mAh cm−2. Notably, StZ-Zn||NaV3O8·1.5H2O full cell can stably operate for 2500 cycles at 5 A g−1 with an outstanding capacity retention of 92%.
中文翻译:
构建 3D 交联大分子网络作为超稳定 Zn 金属负极的高效界面层
水性锌离子电池 (AZIBs) 因其理论容量高、锌资源丰富、本质安全性强等优点而发展迅速。然而,AZIBs 的进展受到无法控制的寄生反应和枝晶过度生长的阻碍,这损害了锌金属负极的耐用性和有效利用。为了应对这些挑战,该研究构建了一个由锌离子键合马铃薯淀粉 (StZ) 组成的 3D 交联大分子网络,作为 Zn 箔 (StZ-Zn) 上的界面层,以抑制析氢,调节 Zn2+ 通量,并确保 Zn 均匀沉积。密度泛函理论计算、分子动力学模拟、COMSOL Multiphysics 仿真和原位拉曼光谱表明,3D StZ 界面层通过重构溶剂化壳层来促进 Zn2+ 脱溶剂化。这个过程降低了阳极 H2O 的浓度,从而抑制了析氢反应。因此,Zn2+ 传输效率更高,促进了均匀的 Zn2+ 通量并实现了无枝晶的 Zn 沉积。因此,StZ-Zn||StZ-Zn 对称电池在 5 mA cm-2 的电流密度下提供 4800 h 的超长使用寿命,相应的累积容量高达 12000 mAh cm-2。值得注意的是,StZ-Zn||NaV3O8·1.5H2O 满电池可在 5 A g−1 下稳定运行 2500 次循环,具有出色的容量保持率 92%。
更新日期:2024-11-20
中文翻译:
构建 3D 交联大分子网络作为超稳定 Zn 金属负极的高效界面层
水性锌离子电池 (AZIBs) 因其理论容量高、锌资源丰富、本质安全性强等优点而发展迅速。然而,AZIBs 的进展受到无法控制的寄生反应和枝晶过度生长的阻碍,这损害了锌金属负极的耐用性和有效利用。为了应对这些挑战,该研究构建了一个由锌离子键合马铃薯淀粉 (StZ) 组成的 3D 交联大分子网络,作为 Zn 箔 (StZ-Zn) 上的界面层,以抑制析氢,调节 Zn2+ 通量,并确保 Zn 均匀沉积。密度泛函理论计算、分子动力学模拟、COMSOL Multiphysics 仿真和原位拉曼光谱表明,3D StZ 界面层通过重构溶剂化壳层来促进 Zn2+ 脱溶剂化。这个过程降低了阳极 H2O 的浓度,从而抑制了析氢反应。因此,Zn2+ 传输效率更高,促进了均匀的 Zn2+ 通量并实现了无枝晶的 Zn 沉积。因此,StZ-Zn||StZ-Zn 对称电池在 5 mA cm-2 的电流密度下提供 4800 h 的超长使用寿命,相应的累积容量高达 12000 mAh cm-2。值得注意的是,StZ-Zn||NaV3O8·1.5H2O 满电池可在 5 A g−1 下稳定运行 2500 次循环,具有出色的容量保持率 92%。