当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO3 Substrate to Enhance Osseointegration
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-20 , DOI: 10.1002/adma.202414161
Xiaowen Sun, Yaru Guo, Xiaona Zheng, Yunyang Bai, Yixuan Lu, Xue Yang, Ziming Cai, Erxiang Xu, Ying He, Boon Chin Heng, Mingming Xu, Xuliang Deng, Xuehui Zhang

The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO3 (BTO) substrate to provide 3D spatial electrical stimulation. The BTO micropillar arrays, especially with a height of 50 µm and positive-charge distribution (50 µm positive), promote the spreading, cytoskeletal reorganization, focal adhesion maturation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). They enhanced the clustering of mechanosensing integrin α5 in BMSCs. The biomimetic 3D spatial electrical microenvironment accelerated bone repair and osseointegration in a rat femoral diaphysis defect repair model. The study thus reveals that implants with a 3D spatial electrical microenvironment can significantly enhance osseointegration, thereby providing a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.

中文翻译:


优化压电 BaTiO3 衬底上 3D 微柱形貌提供的电微环境以增强骨结合



骨植入物支架的电特性是调节细胞行为和促进成骨的关键因素。以前的研究表明,在正电纳米膜和负电性骨缺损壁之间建立的内置电场有利于促进骨缺损愈合。考虑到生理电微环境在空间上是 3D 分布的,因此必须在骨支架上建立 3D 空间带电微环境以优化骨结合的功效。尽管如此,这仍然是一个艰巨的挑战。在这里,在压电 BaTiO3 (BTO) 衬底上开发了一种利用微尺度 3D 形貌的骨修复策略,以提供 3D 空间电刺激。BTO 微柱阵列,尤其是高度为 50 μm 且带正电荷分布(正电荷为 50 μm)的微柱阵列,可促进骨髓间充质干细胞 (BMSC) 的扩散、细胞骨架重组、黏着斑成熟和成骨分化。它们增强了机械感应整合素 α5 在 BMSC 中的聚集。仿生 3D 空间电微环境加速大鼠股骨干缺损修复模型中的骨修复和骨结合。因此,该研究表明,具有 3D 空间电微环境的植入物可以显着增强骨结合,从而为优化用于组织再生治疗的电活性生物材料的性能提供一种新策略。
更新日期:2024-11-20
down
wechat
bug