当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Electrochemical Acetone/Isopropanol Hydrogenation Cycle – An Alternative to Current Hydrogen Storage Solutions
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-20 , DOI: 10.1002/aenm.202403824 Dominik Venus, Axel Marth, Sebastian Riess, Anna T.S. Freiberg, Matthew Brodt, Michael Wensing, Peter Wasserscheid, Simon Thiele
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-20 , DOI: 10.1002/aenm.202403824 Dominik Venus, Axel Marth, Sebastian Riess, Anna T.S. Freiberg, Matthew Brodt, Michael Wensing, Peter Wasserscheid, Simon Thiele
Liquid organic hydrogen carrier (LOHC) systems offer a promising way to store hydrogen using the existing infrastructure for liquid fuels. While LOHC hydrogenation and dehydrogenation processes have so far mainly been investigated using thermocatalytic processes, this work explores the concept of a low-temperature (<80 °C) electrochemical acetone/isopropanol LOHC cycle and indicates its potential benefits for a future hydrogen economy. This electrochemical liquid organic hydrogen carrier (EC-LOHC) system builds on low-cost chemicals with low ecotoxicology. In this study, the influence of temperature and fuel concentrations on the polarization curves of the electrochemical hydrogenation and dehydrogenation units in a small, single-cell set-up is investigated using proton exchange membrane fuel cell components. Based on the experimental results, efficiencies are determined for a power-to-power cycle that can be competitive to mature hydrogen storage technologies, such as liquid and compressed hydrogen storage. Finally, material-related challenges are discussed, encouraging future research in this new field of hydrogen storage.
中文翻译:
电化学丙酮/异丙醇加氢循环 – 当前储氢解决方案的替代方案
液态有机氢载体 (LOHC) 系统提供了一种很有前途的方式,可以利用现有的液体燃料基础设施来储存氢气。虽然迄今为止主要使用热催化工艺研究 LOHC 加氢和脱氢过程,但这项工作探讨了低温 (<80 °C) 电化学丙酮/异丙醇 LOHC 循环的概念,并表明了它对未来氢经济的潜在好处。这种电化学液态有机氢载体 (EC-LOHC) 系统建立在具有低生态毒理学的低成本化学品之上。在本研究中,使用质子交换膜燃料电池组件研究了温度和燃料浓度对小型单电池装置中电化学加氢和脱氢装置极化曲线的影响。根据实验结果,确定了与成熟的储氢技术(如液态和压缩储氢)相媲美的电转电循环的效率。最后,讨论了与材料相关的挑战,鼓励了这一新储氢领域的未来研究。
更新日期:2024-11-20
中文翻译:
电化学丙酮/异丙醇加氢循环 – 当前储氢解决方案的替代方案
液态有机氢载体 (LOHC) 系统提供了一种很有前途的方式,可以利用现有的液体燃料基础设施来储存氢气。虽然迄今为止主要使用热催化工艺研究 LOHC 加氢和脱氢过程,但这项工作探讨了低温 (<80 °C) 电化学丙酮/异丙醇 LOHC 循环的概念,并表明了它对未来氢经济的潜在好处。这种电化学液态有机氢载体 (EC-LOHC) 系统建立在具有低生态毒理学的低成本化学品之上。在本研究中,使用质子交换膜燃料电池组件研究了温度和燃料浓度对小型单电池装置中电化学加氢和脱氢装置极化曲线的影响。根据实验结果,确定了与成熟的储氢技术(如液态和压缩储氢)相媲美的电转电循环的效率。最后,讨论了与材料相关的挑战,鼓励了这一新储氢领域的未来研究。