Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exploring Ion Transmission Mechanisms in Clay‐Based 2D Nanofluidics for Osmotic Energy Conversion
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202406757 Shiwen Wang, Jiadong Tang, Bing Liu, Lingzhi Xia, Jingbing Liu, Yuhong Jin, Hao Wang, Zilong Zheng, Qianqian Zhang
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202406757 Shiwen Wang, Jiadong Tang, Bing Liu, Lingzhi Xia, Jingbing Liu, Yuhong Jin, Hao Wang, Zilong Zheng, Qianqian Zhang
Clay‐based 2D nanofluidics present a promising avenue for osmotic energy harvesting due to their low cost and straightforward large‐scale preparation. However, a comprehensive understanding of ion transport mechanisms, and horizontal and vertical transmission, remains incomplete. By employing a multiscale approach in combination of first‐principles calculations and molecular dynamics simulations, the issue of how transmission directions impact on the clay‐based 2D nanofluidics on osmotic energy conversion is addressed. It is indicated that the selective and rapid hopping transport of cations in clay‐based 2D nanofluidics is facilitated by the electrostatic field within charged nanochannels. Furthermore, horizontally transported nanofluidics exhibited stronger ion fluxes, higher ion transport efficiencies, and lower transmembrane energy barriers compared to vertically transported ones. Therefore, adjusting the ion transport pathways between artificial seawater and river water resulted in an increase in osmotic power output from 2.8 to 5.3 W m−2 , surpassing the commercial benchmark (5 W m−2 ). This work enhanced the understanding of ion transport pathways in clay‐based 2D nanofluidics, advancing the practical applications of osmotic energy harvesting.
中文翻译:
探索基于粘土的 2D 纳米流体中用于渗透能量转换的离子传输机制
基于粘土的 2D 纳米流体技术由于其低成本和简单的大规模制备,为渗透能量收集提供了一条有前途的途径。然而,对离子传输机制以及水平和垂直传输的全面了解仍然不完整。通过采用第一性原理计算和分子动力学模拟相结合的多尺度方法,解决了传输方向如何影响基于粘土的 2D 纳米流体对渗透能转换的问题。结果表明,带电纳米通道内的静电场促进了阳离子在基于粘土的 2D 纳米流体中的选择性和快速跳跃传输。此外,与垂直传输的纳米流体相比,水平传输的纳米流体表现出更强的离子通量、更高的离子传输效率和更低的跨膜能量屏障。因此,调整人工海水和河水之间的离子传输路径导致渗透功率输出从 2.8 W m-2 增加到 5.3 W m-2,超过了商业基准 (5 W m-2)。这项工作增强了对基于粘土的 2D 纳米流体中离子传输途径的理解,推进了渗透能量收集的实际应用。
更新日期:2024-11-20
中文翻译:
探索基于粘土的 2D 纳米流体中用于渗透能量转换的离子传输机制
基于粘土的 2D 纳米流体技术由于其低成本和简单的大规模制备,为渗透能量收集提供了一条有前途的途径。然而,对离子传输机制以及水平和垂直传输的全面了解仍然不完整。通过采用第一性原理计算和分子动力学模拟相结合的多尺度方法,解决了传输方向如何影响基于粘土的 2D 纳米流体对渗透能转换的问题。结果表明,带电纳米通道内的静电场促进了阳离子在基于粘土的 2D 纳米流体中的选择性和快速跳跃传输。此外,与垂直传输的纳米流体相比,水平传输的纳米流体表现出更强的离子通量、更高的离子传输效率和更低的跨膜能量屏障。因此,调整人工海水和河水之间的离子传输路径导致渗透功率输出从 2.8 W m-2 增加到 5.3 W m-2,超过了商业基准 (5 W m-2)。这项工作增强了对基于粘土的 2D 纳米流体中离子传输途径的理解,推进了渗透能量收集的实际应用。