Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Engineering of Polymer Solid‐State Lithium Battery Electrolytes and Li‐Metal Anode: Current Status and Future Directions
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202406357 Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202406357 Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem
A combination of material innovations, advanced manufacturing, battery management systems, and regulatory standards is necessary to improve the energy density and safety of lithium (Li) batteries. High‐energy‐density solid‐state Li‐batteries have the potential to revolutionize industries and technologies, making them a research priority. The combination of improved safety and compatibility with high‐capacity electrode materials makes solid‐stateLi‐batteries with polymer solid‐electrolytes an attractive option for applications where energy density and safety are critical. While polymer‐based solid‐state Li‐batteries hold enormous promise, there are still several challenges that must be addressed, particularly regarding interface between polymer solid‐electrolyte and Lianode. There are significant advancements in improving the performance of solid‐state Li batteries, and researchers continue to explore new methods to address these challenges. These improvements are critical for enabling the widespread adoption of solid‐state Li‐batteries invariety of applications, from electrical vehicles to portable electronics. Here, common polymer solid‐electrolyte and its interface challenges with Lianode are first introduced, highlighting the trend in polymer solid‐state‐electrolyte research toward enhancing stability, safety, and performance of solid‐state Li‐batteries. This includes developing novel polymer materials with improved properties, exploring advanced fabrication techniques, and integrating these electrolytes into battery designs that optimize both safety and energy density.
中文翻译:
聚合物固态锂电池电解液与锂金属负极的界面工程研究现状与未来方向
材料创新、先进制造、电池管理系统和监管标准的结合对于提高锂 (Li) 电池的能量密度和安全性是必要的。高能量密度固态锂电池有可能彻底改变工业和技术,使其成为研究重点。提高的安全性和与高容量电极材料的兼容性相结合,使具有聚合物固体电解质的固态锂电池成为能量密度和安全性至关重要的应用的有吸引力的选择。虽然聚合物基固态锂电池前景广阔,但仍存在一些必须解决的挑战,特别是在聚合物固体电解质和 Lianode 之间的界面方面。在提高固态锂电池的性能方面取得了重大进展,研究人员继续探索应对这些挑战的新方法。这些改进对于实现固态锂电池在各种应用中的广泛采用至关重要,从电动汽车到便携式电子产品。在这里,首先介绍了常见的聚合物固体电解质及其与 Lianode 的界面挑战,突出了聚合物固态电解质研究朝着提高固态锂电池的稳定性、安全性和性能的方向发展。这包括开发具有改进性能的新型聚合物材料,探索先进的制造技术,并将这些电解质集成到电池设计中,以优化安全性和能量密度。
更新日期:2024-11-20
中文翻译:
聚合物固态锂电池电解液与锂金属负极的界面工程研究现状与未来方向
材料创新、先进制造、电池管理系统和监管标准的结合对于提高锂 (Li) 电池的能量密度和安全性是必要的。高能量密度固态锂电池有可能彻底改变工业和技术,使其成为研究重点。提高的安全性和与高容量电极材料的兼容性相结合,使具有聚合物固体电解质的固态锂电池成为能量密度和安全性至关重要的应用的有吸引力的选择。虽然聚合物基固态锂电池前景广阔,但仍存在一些必须解决的挑战,特别是在聚合物固体电解质和 Lianode 之间的界面方面。在提高固态锂电池的性能方面取得了重大进展,研究人员继续探索应对这些挑战的新方法。这些改进对于实现固态锂电池在各种应用中的广泛采用至关重要,从电动汽车到便携式电子产品。在这里,首先介绍了常见的聚合物固体电解质及其与 Lianode 的界面挑战,突出了聚合物固态电解质研究朝着提高固态锂电池的稳定性、安全性和性能的方向发展。这包括开发具有改进性能的新型聚合物材料,探索先进的制造技术,并将这些电解质集成到电池设计中,以优化安全性和能量密度。