Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Refractory Metal-Based MXenes: Cutting-Edge Preparation and Applications
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202408331 Ruiyan Sun, Ping Hu, Jin Wang, Fan Yang, Fei Zhu, Hairui Xing, Jiao Luo, Lili Gao, Kuaishe Wang, Zongyou Yin
Small ( IF 13.0 ) Pub Date : 2024-11-20 , DOI: 10.1002/smll.202408331 Ruiyan Sun, Ping Hu, Jin Wang, Fan Yang, Fei Zhu, Hairui Xing, Jiao Luo, Lili Gao, Kuaishe Wang, Zongyou Yin
Refractory metal-based MXenes refer to MXenes with M as a refractory metal. Due to their high conductivity, large specific surface area, multiple active sites, high photothermal conversion efficiency, adjustable surface groups, and controllable nanolayer spacing, they hold broad application prospects in various fields such as photoelectrocatalysis, biomedicine, water treatment, electromagnetic shielding, and sensors. The unique physical properties of refractory metal-based MXenes are related to their electronic and crystal structures. The interstitial layer causes the carbides to exhibit different behavior compared to the original metal. At the same time, different preparation methods have a great influence on the interlayer spacing and surface termination of refractory metal-based MXenes, thus affecting their performance. This review systematically summarizes the latest progress in the preparation methods and frontier applications of refractory metal-based MXenes, offering new insights for further development. Additionally, various characterization techniques and first-principles calculations are summarized, which are crucial for optimizing refractory metal-based MXenes for applications such as catalysis, energy storage, and sensors. In summary, the current challenges and future development prospects of refractory metal-based Mxenes are addressed, aiming to provide indispensable information for the intelligent design of 2D materials in the future.
中文翻译:
难熔金属基 MXenes:前沿制备和应用
难熔金属基 MXenes 是指以 M 为难熔金属的 MXenes。由于其导电率高、比表面积大、活性位点多、光热转换效率高、表面基团可调、纳米层间距可控等优点,在光电催化、生物医学、水处理、电磁屏蔽、传感器等各个领域具有广阔的应用前景。难熔金属基 MXene 的独特物理性质与其电子和晶体结构有关。间隙层导致碳化物表现出与原始金属不同的行为。同时,不同的制备方法对难熔金属基 MXenes 的层间距和表面端接影响很大,从而影响其性能。本文系统总结了难熔金属基 MXenes 制备方法的最新进展和前沿应用,为进一步发展提供了新的思路。此外,还总结了各种表征技术和第一性原理计算,这对于优化催化、储能和传感器等应用中的难熔金属基 MXenes 至关重要。综上所述,本文针对难熔金属基 Mxenes 的现状和未来发展前景进行了探讨,旨在为未来二维材料的智能设计提供不可或缺的信息。
更新日期:2024-11-20
中文翻译:
难熔金属基 MXenes:前沿制备和应用
难熔金属基 MXenes 是指以 M 为难熔金属的 MXenes。由于其导电率高、比表面积大、活性位点多、光热转换效率高、表面基团可调、纳米层间距可控等优点,在光电催化、生物医学、水处理、电磁屏蔽、传感器等各个领域具有广阔的应用前景。难熔金属基 MXene 的独特物理性质与其电子和晶体结构有关。间隙层导致碳化物表现出与原始金属不同的行为。同时,不同的制备方法对难熔金属基 MXenes 的层间距和表面端接影响很大,从而影响其性能。本文系统总结了难熔金属基 MXenes 制备方法的最新进展和前沿应用,为进一步发展提供了新的思路。此外,还总结了各种表征技术和第一性原理计算,这对于优化催化、储能和传感器等应用中的难熔金属基 MXenes 至关重要。综上所述,本文针对难熔金属基 Mxenes 的现状和未来发展前景进行了探讨,旨在为未来二维材料的智能设计提供不可或缺的信息。