Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient Photocatalytic Hydrogen Production Using In-Situ Polymerized Gold Nanocluster Assemblies
Small ( IF 13.0 ) Pub Date : 2024-11-19 , DOI: 10.1002/smll.202406551 Debkumar Bera, Sukhendu Mahata, Maitrayee Biswas, Komal Kumari, Surajit Rakshit, Nonappa, Srabanti Ghosh, Nirmal Goswami
Small ( IF 13.0 ) Pub Date : 2024-11-19 , DOI: 10.1002/smll.202406551 Debkumar Bera, Sukhendu Mahata, Maitrayee Biswas, Komal Kumari, Surajit Rakshit, Nonappa, Srabanti Ghosh, Nirmal Goswami
Gold nanoparticles (NPs) are widely recognized as co-catalysts in semiconductor photocatalysis for enhancing hydrogen production efficiency, but they are often overlooked as primary catalysts due to the rapid recombination of excited-state electrons. This study presents an innovative gold-based photocatalyst design utilizing an in situ dopamine polymerization-guided assembly approach for efficient H2 generation via water splitting. By employing gold superclusters (AuSCs; ≈100 nm) instead of ultra-small gold nanoclusters (AuNCs; ≈2 nm) before polymerization, unique nanodisk-like 3D superstructures consisting of agglomerated 2D polydopamine (PDA) nanosheets with a high percentage of uniformly embedded AuNCs are created that exhibit enhanced metallic character post-polymerization. The thin PDA layer between adjacent AuNCs functions as an efficient electron transport medium, directing excited-state electrons toward the surface and minimizing recombination. Notably, the AuSCs@PDA structure shows the largest potential difference (26.0 mV) compared to AuSCs (≈18.4 mV) and PDA NPs (≈14.6 mV), indicating a higher population of accumulated photo-generated carriers. As a result, AuSCs@PDA achieves a higher photocurrent density, improved photostability, and lower charge transfer resistance than PDA NPs, AuSCs, or AuNCs@PDA, with the highest hydrogen evolution rate of 3.20 mmol g−1 h−1. This work highlights a promising in situ polymerization strategy for enhancing photocatalytic hydrogen generation with metal nanoclusters.
中文翻译:
使用原位聚合金纳米团簇组件进行高效光催化制氢
金纳米颗粒 (NPs) 被广泛认为是半导体光催化中提高制氢效率的助催化剂,但由于激发态电子的快速复合,它们作为主催化剂经常被忽视。本研究提出了一种创新的金基光催化剂设计,利用原位多巴胺聚合引导的组装方法,通过水分解高效生成 H2。通过在聚合前使用金超簇(AuSCs;≈100 nm)而不是超小的金纳米簇(AuNCs;≈2 nm),可以创建独特的纳米盘状 3D 超结构,该超结构由团聚的 2D 聚多巴胺 (PDA) 纳米片和高比例的均匀嵌入 AuNC 组成,表现出增强的金属特性后聚合。相邻 AuNC 之间的薄 PDA 层起到有效的电子传输介质的作用,将激发态电子引导至表面并最大限度地减少复合。值得注意的是,与 AuSCs (≈18.4 mV) 和 PDA NPs (≈14.6 mV) 相比,AuSCs@PDA结构显示出最大的电位差 (26.0 mV),表明积累的光生载流子数量更高。因此,与 PDA NPs、AuSCs 或 AuNCs@PDA 相比,AuSCs@PDA 实现了更高的光电流密度、更好的光稳定性和更低的电荷转移电阻,具有 3.20 mmol g-1 h-1 的最高析氢速率。这项工作突出了一种有前途的原位聚合策略,用于增强金属纳米团簇的光催化制氢。
更新日期:2024-11-20
中文翻译:
使用原位聚合金纳米团簇组件进行高效光催化制氢
金纳米颗粒 (NPs) 被广泛认为是半导体光催化中提高制氢效率的助催化剂,但由于激发态电子的快速复合,它们作为主催化剂经常被忽视。本研究提出了一种创新的金基光催化剂设计,利用原位多巴胺聚合引导的组装方法,通过水分解高效生成 H2。通过在聚合前使用金超簇(AuSCs;≈100 nm)而不是超小的金纳米簇(AuNCs;≈2 nm),可以创建独特的纳米盘状 3D 超结构,该超结构由团聚的 2D 聚多巴胺 (PDA) 纳米片和高比例的均匀嵌入 AuNC 组成,表现出增强的金属特性后聚合。相邻 AuNC 之间的薄 PDA 层起到有效的电子传输介质的作用,将激发态电子引导至表面并最大限度地减少复合。值得注意的是,与 AuSCs (≈18.4 mV) 和 PDA NPs (≈14.6 mV) 相比,AuSCs@PDA结构显示出最大的电位差 (26.0 mV),表明积累的光生载流子数量更高。因此,与 PDA NPs、AuSCs 或 AuNCs@PDA 相比,AuSCs@PDA 实现了更高的光电流密度、更好的光稳定性和更低的电荷转移电阻,具有 3.20 mmol g-1 h-1 的最高析氢速率。这项工作突出了一种有前途的原位聚合策略,用于增强金属纳米团簇的光催化制氢。