当前位置:
X-MOL 学术
›
Land Degrad. Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Active Gully Head Erosion Rates Characteristics on the Loess Plateau: InSAR‐Based Calculation and Response to Extreme Rainfall
Land Degradation & Development ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1002/ldr.5358 Shaoqing Yuan, Wen Fan, Chengcheng Jiang, Yupeng Chang, Wenbo Zheng
Land Degradation & Development ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1002/ldr.5358 Shaoqing Yuan, Wen Fan, Chengcheng Jiang, Yupeng Chang, Wenbo Zheng
Quantitative analysis and prediction of gully head erosion hold paramount importance for terrain evolution studies and risk mitigation effort. However, previous findings could not reconcile high temporal resolution with long time series coverage, particularly at the watershed scale. In this study, a calculation method for the active gully head erosion rate (AGHER) was proposed on the basis of interferometric synthetic aperture radar (InSAR) technology, thereby combining the historical climate data to estimate the annual AGHER. Additionally, we investigated the relative importance of extreme rainfall events on erosion rates. The results indicated that the long‐term annual AGHER in the study area ranged from 51.83 to 89.50 mm year−1 from 1980 to 2023 on the Dongzhi Plateau (DZP). Extreme rainfall events (rainfall amount ≥ 150 mm) emerged as the foremost erosion‐causing factor, accounting for a contribution rate ranging from 69.8% to 75.0%. Furthermore, through field surveys, we identified 21 gully heads that represent potential hazards to high‐speed railways (HSRs). Although the proportion of gullies affecting rail infrastructure may be relatively modest in century‐long projections, it notably increases against the background of worldwide escalation due to the occurrence of extreme precipitation events. This study establishes a robust foundation for gully erosion management and risk assessment on the Loess Plateau.
中文翻译:
黄土高原活跃沟头侵蚀速率特征:基于 InSAR 的计算和对极端降雨的响应
沟壑水头侵蚀的定量分析和预测对于地形演变研究和风险缓解工作至关重要。然而,以前的发现无法将高时间分辨率与长时间序列覆盖率相协调,尤其是在流域尺度上。本研究基于干涉合成孔径雷达(InSAR)技术,提出了一种主动沟头侵蚀率(AGHER)的计算方法,从而结合历史气候数据估算了每年的AGHER。此外,我们还调查了极端降雨事件对侵蚀率的相对重要性。结果表明,1980—2023 年东直高原 (DZP) 研究区长期年化 AGHER 范围为 51.83 至 89.50 mm year−1。极端降雨事件(降雨量≥ 150 mm)成为最重要的侵蚀因素,贡献率从 69.8% 到 75.0% 不等。此外,通过实地调查,我们确定了 21 个对高速铁路 (HSR) 构成潜在危险的沟壑头。尽管在长达一个世纪的预测中,影响铁路基础设施的沟壑比例可能相对较小,但在极端降水事件发生导致全球范围升级的背景下,它显着增加。本研究为黄土高原的沟壑侵蚀管理和风险评估奠定了坚实的基础。
更新日期:2024-11-19
中文翻译:
黄土高原活跃沟头侵蚀速率特征:基于 InSAR 的计算和对极端降雨的响应
沟壑水头侵蚀的定量分析和预测对于地形演变研究和风险缓解工作至关重要。然而,以前的发现无法将高时间分辨率与长时间序列覆盖率相协调,尤其是在流域尺度上。本研究基于干涉合成孔径雷达(InSAR)技术,提出了一种主动沟头侵蚀率(AGHER)的计算方法,从而结合历史气候数据估算了每年的AGHER。此外,我们还调查了极端降雨事件对侵蚀率的相对重要性。结果表明,1980—2023 年东直高原 (DZP) 研究区长期年化 AGHER 范围为 51.83 至 89.50 mm year−1。极端降雨事件(降雨量≥ 150 mm)成为最重要的侵蚀因素,贡献率从 69.8% 到 75.0% 不等。此外,通过实地调查,我们确定了 21 个对高速铁路 (HSR) 构成潜在危险的沟壑头。尽管在长达一个世纪的预测中,影响铁路基础设施的沟壑比例可能相对较小,但在极端降水事件发生导致全球范围升级的背景下,它显着增加。本研究为黄土高原的沟壑侵蚀管理和风险评估奠定了坚实的基础。