Journal of Knowledge Management ( IF 6.6 ) Pub Date : 2024-11-18 , DOI: 10.1108/jkm-03-2024-0262 Luna Leoni, Ginetta Gueli, Marco Ardolino, Mateus Panizzon, Shivam Gupta
Purpose
This paper aims to provide empirical evidence on adopting artificial intelligence (AI), including generative AI, in knowledge management (KM) processes and its impact on organisational decision-making. Specifically, the study addresses three key research questions: RQ1: How is (generative) AI adopted within KM processes in organisations? RQ2: What factors influence the adoption of AI in these processes, either facilitating or inhibiting it? RQ3: How does AI adoption in KM processes affect organisational decision-making?
Design/methodology/approach
An explorative investigation has been conducted through semi-structured interviews with KM and AI experts from a worldwide sample of 52 mostly private, large and for-profit organisations. Interviews have been analysed through a mixed thematic analysis.
Findings
The study provides an original framework in which the three investigated concepts are interconnected according to a dual relationship: linear and retroactive and 20 factors affecting AI adoption within KM processes.
Practical implications
The provided model guides managers in improving their organisational decision-making through AI adoption in KM processes. Moreover, according to the rational decision-making model, the authors propose a six-step systematic procedure for managers.
Originality/value
To the best of the authors’ knowledge, this is the first study that simultaneously addresses AI, KM and decision-making and provides an integrated framework showing the relationships between them, allowing organisations to better and practically understand how to ameliorate their decision-making through AI adoption in KM processes.
中文翻译:
AI 赋能的 KM 决策流程:来自全球组织的经验证据
目的
本文旨在为在知识管理 (KM) 流程中采用人工智能 (AI),包括生成式 AI 及其对组织决策的影响提供实证证据。具体来说,该研究解决了三个关键研究问题: RQ1:如何在组织的 KM 流程中采用(生成式)人工智能?RQ2:哪些因素会影响 AI 在这些过程中的采用,是促进还是抑制它?RQ3:人工智能在 KM 流程中的采用如何影响组织决策?
设计/方法/方法
通过对来自全球 52 个样本的 KM 和 AI 专家进行半结构化访谈,进行了探索性调查,这些样本主要是私营、大型和营利性组织。访谈通过混合主题分析进行分析。
发现
该研究提供了一个原始框架,其中所研究的三个概念根据双重关系相互关联:线性和追溯性以及影响 AI 在 KM 流程中采用的 20 个因素。
实际意义
提供的模型指导管理人员通过在 KM 流程中采用 AI 来改进他们的组织决策。此外,根据理性决策模型,作者为管理者提出了一个六步系统程序。
原创性/价值
据作者所知,这是第一项同时解决 AI、知识管理和决策的研究,并提供了一个集成框架来显示它们之间的关系,使组织能够更好、更实际地了解如何通过在 KM 流程中采用 AI 来改善其决策。