Nature Communications ( IF 14.7 ) Pub Date : 2024-11-20 , DOI: 10.1038/s41467-024-54442-4 Guangtao Zan, Wei Jiang, HoYeon Kim, Kaiying Zhao, Shengyou Li, Kyuho Lee, Jihye Jang, Gwanho Kim, EunAe Shin, Woojoong Kim, Jin Woo Oh, Yeonji Kim, Jong Woong Park, Taebin Kim, Seonju Lee, Ji Hye Oh, Jowon Shin, Hyeong Jun Kim, Cheolmin Park
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
中文翻译:
一种由协同复杂凝聚和内置电位实现的核壳纤维湿气驱动发电机
湿气驱动发电机 (MEG) 已被广泛研究;然而,高性能的柔性变体很少得到展示。在这里,我们提出了一种新型的复杂凝聚,具有内置潜在策略,用于开发高性能单轴 MEG,其核心为聚(3,4-乙烯二氧噻吩)(PEDOT),具有内置电荷电位,凝胶壳由聚(二烯丙基二甲基氯化铵)(PDDA)和海藻酸钠 (NaAlg) 凝聚物组成。两个带相反电荷的聚电解质的复杂凝聚在装置中产生额外的移动载体和自由体积;同时,PEDOT 核心的表面电荷显着加速了载流子扩散。因此,基于单轴光纤的 MEG 表现出突破性的性能,在 20% 相对湿度下可实现高达 0.8 V 的输出电压、1.05 mA/cm2 的最大电流密度和 184 μW/cm2 的功率密度。此外,PEDOT 纳米带衬底的机械稳健性即使在 100,000 次折叠循环后也不会降低性能,使其适用于自供电的人体交互传感器和突触。值得注意的是,我们已经构建了首个 MEG 突触自供电设备,基于纤维的 MEG 成功操作突触忆阻器,从而模拟与纤维神经元相连的自主人类突触。总体而言,这项工作开创了高性能 MEG 的创新设计策略和应用场景。