当前位置:
X-MOL 学术
›
Gondwana Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Classifying zircon: A machine-learning approach using zircon geochemistry
Gondwana Research ( IF 7.2 ) Pub Date : 2024-10-03 , DOI: 10.1016/j.gr.2024.09.010 Jintao Kong, Hongru Yu, Junyi Sun, Huan Zhang, Miaomiao Zhang, Zhi Xia
Gondwana Research ( IF 7.2 ) Pub Date : 2024-10-03 , DOI: 10.1016/j.gr.2024.09.010 Jintao Kong, Hongru Yu, Junyi Sun, Huan Zhang, Miaomiao Zhang, Zhi Xia
This study presented a novel, rapid, and accurate method for determining zircon origin via a comprehensive analysis of a dataset containing 27,818 zircon trace element sets. This method integrated back propagation neural networks with the AdaBoost algorithm. The optimal classifier characterized as a linear combination of a two-layer neural network model, comprised 100 base classifiers and 400 hidden neurons. It was rigorously trained over 1000 iterations, which resulted in an unbiased error rate of 8.31%. To facilitate practical application, the classifier was integrated into a macro-enabled Excel spreadsheet.
中文翻译:
锆石分类:一种使用锆石地球化学的机器学习方法
本研究通过对包含 27,818 组锆石微量元素集的数据集进行全面分析,提出了一种新颖、快速和准确的方法来确定锆石来源。此方法将反向传播神经网络与 AdaBoost 算法集成在一起。最佳分类器的特点是两层神经网络模型的线性组合,包括 100 个基本分类器和 400 个隐藏神经元。它经过了 1000 多次迭代的严格训练,结果是 8.31% 的无偏错误率。为了便于实际应用,该分类器被集成到一个支持宏的 Excel 电子表格中。
更新日期:2024-10-03
中文翻译:
锆石分类:一种使用锆石地球化学的机器学习方法
本研究通过对包含 27,818 组锆石微量元素集的数据集进行全面分析,提出了一种新颖、快速和准确的方法来确定锆石来源。此方法将反向传播神经网络与 AdaBoost 算法集成在一起。最佳分类器的特点是两层神经网络模型的线性组合,包括 100 个基本分类器和 400 个隐藏神经元。它经过了 1000 多次迭代的严格训练,结果是 8.31% 的无偏错误率。为了便于实际应用,该分类器被集成到一个支持宏的 Excel 电子表格中。