当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Demand response optimization for smart grid integrated buildings: Review of technology enablers landscape and innovation challenges
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-11-17 , DOI: 10.1016/j.enbuild.2024.115067
Liana Toderean, Tudor Cioara, Ionut Anghel, Elissaios Sarmas, Vasilis Michalakopoulos, Vangelis Marinakis

This paper provides a comprehensive overview and analysis of state-of-the-art technological advancements in building integration insmartgrids, with a focus on enabling their participation in demand response (DR). We consolidate knowledge from high-quality sources on the main research topics, helping researchers, building owners, and energy stakeholders to stay informed about the latest developments, trends, and best practices inthe field.Our review covers reputable journals papers that offer technological enablers and evidence-based insights onbuilding interoperability, AI-based energy prediction models, demand optimization and coordination, data privacy, and decentralization.Managing buildings in DR requires careful coordination and control,thuswe provide valuable insights into current practices and opportunities by examining the EU innovation projects and identifying technological innovation trends that aim to increase resident engagement by addressing regulatory and socio-economic concerns. We also discuss the main barriers to buildings’ participation in DR identifying future research directions in the field and providing mitigation insights to the building owners and grid operators. Our findings indicate that despite their potentialbuildingparticipation is limited due to the absence of a clear regulatory framework and lack of mature technologiesto fully support and automate theprogramsimplementation. While AI and optimization technologiesshow promise for improving demand coordination, challenges such as limited interoperability between buildings and energy grids, privacy concerns, and insufficient financial incentivization significantly limit the building’s participation in DR.

中文翻译:


智能电网集成建筑的需求响应优化:技术使能因素、前景和创新挑战综述



本文全面概述了和分析了构建智能电网集成的最新技术进步,重点是使它们能够参与需求响应 (DR)。我们整合了来自主要研究主题的高质量来源的知识,帮助研究人员、建筑业主和能源利益相关者随时了解该领域的最新发展、趋势和最佳实践。我们的评论涵盖了知名期刊论文,这些论文在构建互操作性、基于 AI 的能源预测模型、需求优化和协调、数据隐私和去中心化方面提供了技术推动因素和基于证据的见解。在 DR 中管理建筑物需要仔细的协调和控制,因此我们通过检查欧盟创新项目和确定旨在通过解决监管和社会经济问题来提高居民参与度的技术创新趋势,为当前的实践和机会提供有价值的见解。我们还讨论了建筑物参与 DR 的主要障碍,确定了该领域未来的研究方向,并为建筑物所有者和电网运营商提供了缓解见解。我们的研究结果表明,尽管他们具有潜力,但由于缺乏明确的监管框架和缺乏成熟的技术来完全支持和自动化项目实施,参与度受到限制。虽然 AI 和优化技术有望改善需求协调,但建筑物和能源网格之间的互操作性有限、隐私问题和财务激励措施不足等挑战严重限制了建筑物对 DR 的参与。
更新日期:2024-11-17
down
wechat
bug