当前位置: X-MOL 学术Energy Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerating chiller sequencing using dynamic programming
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-11-09 , DOI: 10.1016/j.enbuild.2024.115037
Shuhao Li, Siqi Li, Zhe Wang

Effective management of heating, ventilation, and air conditioning (HVAC) systems is crucial for enhancing building energy efficiency. Chillers, a significant component of HVAC systems, are responsible for more than 50 % of energy usage of the whole cooling plant, underscoring the importance of optimizing chiller sequencing. Although Model Predictive Control (MPC) has demonstrated efficacy in enhancing chiller performance, its widespread adoption is hindered by its high computational complexity. This study introduces a dynamic programming approach coupled with a 2-step optimization method to expedite chiller sequencing optimization while upholding MPC’s real-time control capabilities. The MPC method implemented in this study integrates a load forecasting model with an artificial neural network (ANN) based chiller model. Through simulation tests utilizing historical HVAC operational data from a commercial building located in Shanghai, the proposed chiller sequencing strategy achieves a 9.73 % decrease in energy consumption. Moreover, the dynamic programming approach, especially in conjunction with the 2-step optimization process, significantly reduces the MPC solution time at each control step from 165 min to 3.61 s, making it a viable solution for real-time MPC deployment. Additionally, the research delves into the influence of the chiller model’s complexity, the optimization strategy, and control horizon on computational efficiency. This research provides a feasible solution to implement chiller sequencing in real buildings to pick up the low-hanging fruits in an effective way.

中文翻译:


使用动态编程加速冷水机组排序



有效管理供暖、通风和空调 (HVAC) 系统对于提高建筑能效至关重要。冷水机组是 HVAC 系统的重要组成部分,占整个冷却厂 50% 以上的能源使用量,这凸显了优化冷水机组顺序的重要性。尽管模型预测控制 (MPC) 已证明在提高冷水机组性能方面有效,但其广泛的采用受到其高计算复杂性的阻碍。本研究引入了一种动态编程方法,并结合了 2 步优化方法,以加快冷水机组排序优化,同时保持 MPC 的实时控制能力。本研究中实施的 MPC 方法将负载预测模型与基于人工神经网络 (ANN) 的冷水机组模型集成在一起。通过利用上海一栋商业建筑的历史 HVAC 运行数据进行模拟测试,拟议的冷水机组排序策略实现了 9.73% 的能耗降低。此外,动态编程方法,特别是与 2 步优化过程相结合,将每个控制步骤的 MPC 求解时间从 165 分钟显著缩短到 3.61 s,使其成为实时 MPC 部署的可行解决方案。此外,该研究还深入探讨了冷水机组模型的复杂性、优化策略和控制视界对计算效率的影响。本研究提供了一种可行的解决方案,可以在实际建筑物中实施冷水机组排序,以有效地拾取唾手可得的成果。
更新日期:2024-11-09
down
wechat
bug