当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The impact of urban morphology on energy demand of a residential building in a Mediterranean climate
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.enbuild.2024.114989 Aseel Abu Dab’at, Shireen Alqadi
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.enbuild.2024.114989 Aseel Abu Dab’at, Shireen Alqadi
This paper uniquely and systematically explores the relationship between energy performance of buildings and urban morphology by studying an existing urban fabric in a Mediterranean climate. The study took place in the city of Hebron which is geographically confined in area with continuous urbanization. Using (GIS), the K-means clustering technique was chosen to perform the statistical analysis. The coefficient variables of Floor Space Index (FSI), Ground Space Index (GSI), Open Space Ratio(OSR), and buildings’ height (L), were identified at the urban level to classify the urban tissue of the city. Accordingly, six urban patterns with equal area of 33,000 m2 were selected as representative samples of the different urban patterns of the city’s urban fabric. Then, a prototype building was placed in each of the selected patterns by the mean centre in the GIS based on the horizontal-vertical built density. Building energy simulation was performed using Design Builder software to assess the prototype’s performance. The results showed that the urban form plays a significant role in determining performance quality and energy demand. The results indicate that the cooling demand decreases when the ratio of (FSI) and (GSI) increases and when the (OSR) decreases, and vice versa in relation to the heating demand. Notably, Pattern 4, with (FSI) of 1.2, (GSI) of 0.6, (OSR) of 0.6, and (L) of 1.7, exhibited the highest heating demand at 40.3 kWh/m2 /year, whereas Pattern 3, with (FSI) of 0.7, (GSI) of 0.3, (OSR) of 2.5, and (L) of 2.0, recorded the lowest at 18.6 kWh/m2 /year. Conversely, Pattern 3 had the highest cooling demand, while Pattern 2, with (FSI) of 1.0, (GSI) of 0.3, (OSR) of 1.6, and (L) of 3.0, had the lowest cooling demand. To enhance energy efficiency, urban planners should consider increasing the (FSI) and (GSI) while managing the (OSR) to balance heating and cooling demands. Patterns with moderate (FSI) and (GSI) and higher (OSR) generally result in lower cooling demands and more efficient energy use. Enhancing the energy efficiency of cities should be tackled not only on the single building level but also on the urban scale. This should be addressed in urban regeneration, master plans and building regulations. Incorporating tools that consider the impact of all urban parameters can contribute to energy savings.
中文翻译:
地中海气候下城市形态对住宅建筑能源需求的影响
本文通过研究地中海气候下的现有城市结构,独特而系统地探讨了建筑物的能源性能与城市形态之间的关系。该研究在希伯伦市进行,该市在地理上受到持续城市化的地区限制。使用 (GIS),选择 K-means 聚类技术来执行统计分析。在城市层面识别了建筑面积指数 (FSI) 、地面空间指数 (GSI) 、开放空间比率 (OSR) 和建筑物高度 (L) 的系数变量,以对城市组织进行分类。因此,选择了 6 个等面积为 33,000 m2 的城市模式作为城市城市肌理中不同城市模式的代表性样本。然后,根据水平-垂直建筑密度,通过 GIS 中的平均中心将原型建筑放置在每个选定的模式中。使用 Design Builder 软件执行建筑能量模拟,以评估原型的性能。结果表明,城市形态在决定性能、质量和能源需求方面起着重要作用。结果表明,当 (FSI) 和 (GSI) 的比率增加以及 (OSR) 的比率降低时,制冷需求会降低,反之亦然。值得注意的是,模式 4 的 (FSI) 为 1.2,(GSI) 为 0.6,(OSR) 为 0.6,(L) 为 1.7,表现出最高的供暖需求,为 40.3 kWh/m2/年,而模式 3,(FSI) 为 0.7,(GSI) 为 0.3,(OSR) 为 2.5,(L) 为 2.0,最低,为 18.6 kWh/m2/年。相反,模式 3 的冷却需求最高,而模式 2 的冷却需求最低,(FSI) 为 1.0,(GSI) 为 0.3,(OSR) 为 1.6,(L) 为 3.0。 为了提高能源效率,城市规划者应考虑在管理 (OSR) 的同时增加 (FSI) 和 (GSI),以平衡供暖和制冷需求。中等 (FSI) 和 (GSI) 以及较高的 (OSR) 模式通常会导致较低的冷却需求和更高效的能源利用。提高城市能源效率不仅应在单个建筑层面上解决,还应在城市范围内解决。这应该在城市更新、总体规划和建筑法规中得到解决。整合考虑所有城市参数影响的工具有助于节能。
更新日期:2024-11-07
中文翻译:
地中海气候下城市形态对住宅建筑能源需求的影响
本文通过研究地中海气候下的现有城市结构,独特而系统地探讨了建筑物的能源性能与城市形态之间的关系。该研究在希伯伦市进行,该市在地理上受到持续城市化的地区限制。使用 (GIS),选择 K-means 聚类技术来执行统计分析。在城市层面识别了建筑面积指数 (FSI) 、地面空间指数 (GSI) 、开放空间比率 (OSR) 和建筑物高度 (L) 的系数变量,以对城市组织进行分类。因此,选择了 6 个等面积为 33,000 m2 的城市模式作为城市城市肌理中不同城市模式的代表性样本。然后,根据水平-垂直建筑密度,通过 GIS 中的平均中心将原型建筑放置在每个选定的模式中。使用 Design Builder 软件执行建筑能量模拟,以评估原型的性能。结果表明,城市形态在决定性能、质量和能源需求方面起着重要作用。结果表明,当 (FSI) 和 (GSI) 的比率增加以及 (OSR) 的比率降低时,制冷需求会降低,反之亦然。值得注意的是,模式 4 的 (FSI) 为 1.2,(GSI) 为 0.6,(OSR) 为 0.6,(L) 为 1.7,表现出最高的供暖需求,为 40.3 kWh/m2/年,而模式 3,(FSI) 为 0.7,(GSI) 为 0.3,(OSR) 为 2.5,(L) 为 2.0,最低,为 18.6 kWh/m2/年。相反,模式 3 的冷却需求最高,而模式 2 的冷却需求最低,(FSI) 为 1.0,(GSI) 为 0.3,(OSR) 为 1.6,(L) 为 3.0。 为了提高能源效率,城市规划者应考虑在管理 (OSR) 的同时增加 (FSI) 和 (GSI),以平衡供暖和制冷需求。中等 (FSI) 和 (GSI) 以及较高的 (OSR) 模式通常会导致较低的冷却需求和更高效的能源利用。提高城市能源效率不仅应在单个建筑层面上解决,还应在城市范围内解决。这应该在城市更新、总体规划和建筑法规中得到解决。整合考虑所有城市参数影响的工具有助于节能。