当前位置:
X-MOL 学术
›
Eur. J. Agron.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Advancing lettuce physiological state recognition in IoT aeroponic systems: A meta-learning-driven data fusion approach
European Journal of Agronomy ( IF 4.5 ) Pub Date : 2024-10-14 , DOI: 10.1016/j.eja.2024.127387 Osama Elsherbiny, Jianmin Gao, Ming Ma, Yinan Guo, Mazhar H. Tunio, Abdallah H. Mosha
European Journal of Agronomy ( IF 4.5 ) Pub Date : 2024-10-14 , DOI: 10.1016/j.eja.2024.127387 Osama Elsherbiny, Jianmin Gao, Ming Ma, Yinan Guo, Mazhar H. Tunio, Abdallah H. Mosha
Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
中文翻译:
推进物联网气培系统中的生菜生理状态识别:一种元学习驱动的数据融合方法
自动识别植物中的关键生理因素,例如叶片相对湿度 (LRH)、叶绿素含量 (Chl) 和氮水平 (N),对于有效的气培管理和提高生长、产量、质量和可持续性至关重要。元学习 (MetaL) 解决方案利用数据融合和智能处理,确保快速一致的结果。本文旨在开发一种新的 MetaL 框架,该框架利用多模态数据源(包括光谱、热和 IoT 环境数据)来实时、无创地识别气培生菜中的 LRH、Khl 和 N 含量。该研究检查了植物特性中的各种光谱反射指数 (SRI) 和热指标。使用反向传播神经网络 (BPNN) 、决策树 (DT) 和梯度提升机 (GBM) 实现基于模型的特征选择,以识别关键属性并优化超参数。实验结果表明,部署基于 GBM 的 top 变量作为基础模型,结合 BPNN 作为元模型,显著提高了分析分配因子的准确性。与单独将基于 BPNN 的特征作为独立模型应用相比,LRH 、 Khl 和 N 的预测分数 (R²) 分别增加到 0.875 (RMSE=0.879)、0.886 (RMSE=0.694) 和 0.930 (RMSE=0.184)。总体而言,设计的方法有助于更准确地预测植物生理状态,从而能够积极主动地迈向可持续的气培农业。
更新日期:2024-10-14
中文翻译:
推进物联网气培系统中的生菜生理状态识别:一种元学习驱动的数据融合方法
自动识别植物中的关键生理因素,例如叶片相对湿度 (LRH)、叶绿素含量 (Chl) 和氮水平 (N),对于有效的气培管理和提高生长、产量、质量和可持续性至关重要。元学习 (MetaL) 解决方案利用数据融合和智能处理,确保快速一致的结果。本文旨在开发一种新的 MetaL 框架,该框架利用多模态数据源(包括光谱、热和 IoT 环境数据)来实时、无创地识别气培生菜中的 LRH、Khl 和 N 含量。该研究检查了植物特性中的各种光谱反射指数 (SRI) 和热指标。使用反向传播神经网络 (BPNN) 、决策树 (DT) 和梯度提升机 (GBM) 实现基于模型的特征选择,以识别关键属性并优化超参数。实验结果表明,部署基于 GBM 的 top 变量作为基础模型,结合 BPNN 作为元模型,显著提高了分析分配因子的准确性。与单独将基于 BPNN 的特征作为独立模型应用相比,LRH 、 Khl 和 N 的预测分数 (R²) 分别增加到 0.875 (RMSE=0.879)、0.886 (RMSE=0.694) 和 0.930 (RMSE=0.184)。总体而言,设计的方法有助于更准确地预测植物生理状态,从而能够积极主动地迈向可持续的气培农业。