当前位置:
X-MOL 学术
›
J. Clean. Prod.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operational Energy Savings in Greenhouses by Retrofitting Covering Plastics with Photothermal Antimony Tin Oxide Nanocoating
Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.jclepro.2024.144242 Mohammad Elmi, Enhe Zhang, Anwar Jahid, Julian Wang
Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.jclepro.2024.144242 Mohammad Elmi, Enhe Zhang, Anwar Jahid, Julian Wang
Energy management in greenhouses is crucial as they demand high energy consumption to keep a desirable environment for products. In this study, a novel greenhouse covering coating is introduced based on photothermal plasmonic nanoparticles to reduce energy consumption in greenhouses. Antimony tin oxide nanoparticles were used as plasmonic nanoparticles and were deposited on polyethylene greenhouse coverings. Thermal and optical properties of the Antimony Tin Oxide-coated covering were characterized, and a comprehensive seasonal greenhouse energy analysis was performed to investigate the energy performance of the developed greenhouse covering. The photosynthetically active radiation (PAR) transmittance of the developed covering is 0.746, and the PAR-to-Solar-Transmittance (PST) value increased about 75% by the new covering. Based on the results, developed greenhouse covering with photothermal plasmonic nanoparticles drops greenhouse heating load by 70% and reduces total greenhouse energy consumption up to 49% in very cold climates. Antimony Tin Oxide nanocoating itself increases greenhouse energy saving by 11.4% in comparison with uncoated-double-layer polyethylene covering. Greenhouse energy savings in this study were achieved without any compromise in photosynthetically active radiation (PAR) and crop growth. A greenhouse covering utilization guideline is provided for each climate zone based on the results of this study to optimize the energy use in the greenhouse. This study opens a new window to innovative material applications in greenhouses to make greenhouses more sustainable and energy-efficient.
中文翻译:
通过用光热锑氧化锡纳米涂层改造覆盖塑料来节省温室的运营能源
温室的能源管理至关重要,因为它们需要高能耗才能为产品保持理想的环境。在这项研究中,引入了一种基于光热等离子体纳米颗粒的新型温室覆盖涂层,以降低温室的能源消耗。氧化锑锡纳米颗粒用作等离子体纳米颗粒,并沉积在聚乙烯温室覆盖物上。表征了氧化锑锡涂层覆盖物的热和光学特性,并进行了全面的季节性温室能源分析,以研究开发的温室覆盖物的能源性能。已开发覆盖层的光合有效辐射 (PAR) 透射率为 0.746,新覆盖层的 PAR 到太阳透射率 (PST) 值增加了约 75%。根据结果,使用光热等离子体纳米颗粒开发的温室覆盖物可将温室供暖负荷降低 70%,并在非常寒冷的气候下将温室总能耗降低多达 49%。与无涂层的双层聚乙烯覆盖物相比,氧化锑纳米涂层本身可将温室节能 11.4%。本研究中的温室气体节能是在不影响光合有效辐射 (PAR) 和作物生长的情况下实现的。根据本研究的结果,为每个气候区提供了温室覆盖物利用指南,以优化温室的能源利用。这项研究为温室中的创新材料应用打开了一扇新窗口,使温室更加可持续和节能。
更新日期:2024-11-19
中文翻译:
通过用光热锑氧化锡纳米涂层改造覆盖塑料来节省温室的运营能源
温室的能源管理至关重要,因为它们需要高能耗才能为产品保持理想的环境。在这项研究中,引入了一种基于光热等离子体纳米颗粒的新型温室覆盖涂层,以降低温室的能源消耗。氧化锑锡纳米颗粒用作等离子体纳米颗粒,并沉积在聚乙烯温室覆盖物上。表征了氧化锑锡涂层覆盖物的热和光学特性,并进行了全面的季节性温室能源分析,以研究开发的温室覆盖物的能源性能。已开发覆盖层的光合有效辐射 (PAR) 透射率为 0.746,新覆盖层的 PAR 到太阳透射率 (PST) 值增加了约 75%。根据结果,使用光热等离子体纳米颗粒开发的温室覆盖物可将温室供暖负荷降低 70%,并在非常寒冷的气候下将温室总能耗降低多达 49%。与无涂层的双层聚乙烯覆盖物相比,氧化锑纳米涂层本身可将温室节能 11.4%。本研究中的温室气体节能是在不影响光合有效辐射 (PAR) 和作物生长的情况下实现的。根据本研究的结果,为每个气候区提供了温室覆盖物利用指南,以优化温室的能源利用。这项研究为温室中的创新材料应用打开了一扇新窗口,使温室更加可持续和节能。