当前位置:
X-MOL 学术
›
Sens. Actuators B Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly dispersed CeO2 nanocubics supported on hydrogen substituted graphyne sheets for highly NH3 gas sensing detection and humidity independent at room temperature
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.snb.2024.136972 Chuantao Zhang, Lingmin Yu, Senlin Li, Lei Cao, Ning Nan, Rushun Xue, Man Gong, Yaxuan Zhang, Hao Zhang, Xuefeng Xiao, Shanglin Yang, Xinhui Fan, Peichang Shi
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.snb.2024.136972 Chuantao Zhang, Lingmin Yu, Senlin Li, Lei Cao, Ning Nan, Rushun Xue, Man Gong, Yaxuan Zhang, Hao Zhang, Xuefeng Xiao, Shanglin Yang, Xinhui Fan, Peichang Shi
NH3 is a fairly important raw material in a number of fields but harmful to the human. Currently, hydrogen substituted graphyne (HsGY) shows fast response to NH3 gas based on our previous report. However, it still suffers from low response values and humidity interference. CeO2 has the advantage of moisture resistance as NH3 gas sensor but prone to agglomeration, whereas the alkyne bond of HsGY can anchor CeO2 to form a discretely distributed CeO2. Therefore, highly dispersed CeO2 nanocubics anchoring on HsGY sheets are synthesized through hydrothermal method. The gas sensing characteristics show that the gas sensing response value to 80 ppm NH3 is increased by 3 times compared to pure HsGY. Furthermore, they present relatively stable NH3 gas response under relative humidity variation (20–80 %). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to reveal the gas sensing mechanism. Energy bands are analyzed using ultraviolet photoemission spectroscopy (UPS), revealing the improvement mechanism of NH3 gas-sensitive performance. Density functional theory (DFT) calculations are employed to explain selectivity mechanism to NH3 against other interference gases. Our research provides novel gas sensing materials for the development of high-performance, moisture-resistant room temperature NH3 sensors.
中文翻译:
高度分散的 CeO2 纳米立方元件支持在氢取代石墨炔片上,用于高度 NH3 气体传感检测和室温下不受湿度影响
NH3 在许多领域都是一种相当重要的原材料,但对人体有害。根据我们之前的报告,目前,氢取代石墨炔 (HsGY) 对 NH3 气体表现出快速响应。但是,它仍然受到低响应值和湿度干扰的影响。CeO2 作为 NH3 气体传感器具有防潮性优势,但容易团聚,而 HsGY 的炔键可以锚定 CeO2 形成离散分布的 CeO2。因此,通过水热法合成了锚定在 HsGY 片材上的高度分散的 CeO2 纳米立方。气体传感特性表明,与纯 HsGY 相比,对 80 ppm NH3 的气体传感响应值增加了 3 倍。此外,它们在相对湿度变化 (20-80%) 下表现出相对稳定的 NH3 气体响应。原位漫反射红外傅里叶变换光谱 (DRIFTS) 用于揭示气体传感机制。使用紫外光电子能谱 (UPS) 分析能带,揭示了 NH3 气体敏感性能的改进机制。采用密度泛函理论 (DFT) 计算来解释 NH3 对其他干扰气体的选择性机制。我们的研究为开发高性能、防潮室温 NH3 传感器提供了新型气体传感材料。
更新日期:2024-11-19
中文翻译:
高度分散的 CeO2 纳米立方元件支持在氢取代石墨炔片上,用于高度 NH3 气体传感检测和室温下不受湿度影响
NH3 在许多领域都是一种相当重要的原材料,但对人体有害。根据我们之前的报告,目前,氢取代石墨炔 (HsGY) 对 NH3 气体表现出快速响应。但是,它仍然受到低响应值和湿度干扰的影响。CeO2 作为 NH3 气体传感器具有防潮性优势,但容易团聚,而 HsGY 的炔键可以锚定 CeO2 形成离散分布的 CeO2。因此,通过水热法合成了锚定在 HsGY 片材上的高度分散的 CeO2 纳米立方。气体传感特性表明,与纯 HsGY 相比,对 80 ppm NH3 的气体传感响应值增加了 3 倍。此外,它们在相对湿度变化 (20-80%) 下表现出相对稳定的 NH3 气体响应。原位漫反射红外傅里叶变换光谱 (DRIFTS) 用于揭示气体传感机制。使用紫外光电子能谱 (UPS) 分析能带,揭示了 NH3 气体敏感性能的改进机制。采用密度泛函理论 (DFT) 计算来解释 NH3 对其他干扰气体的选择性机制。我们的研究为开发高性能、防潮室温 NH3 传感器提供了新型气体传感材料。