当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hexagonal liquid crystals as emerging quasi solid-state electrolytes for aqueous lithium-ion batteries
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157794 Weirong Ren, Zhaowei Hou, Long Su, Xinpei Gao, Yanping Chu, Liqiang Zheng, Fei Lu
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157794 Weirong Ren, Zhaowei Hou, Long Su, Xinpei Gao, Yanping Chu, Liqiang Zheng, Fei Lu
The increasing market demand ranging from portable electronics to electric vehicles drives the advancement of lithium-ion batteries. However, traditional liquid electrolytes used in LIBs are plagued by issues such as leakage, vaporization, and the degradation of active materials, which compromise performance and pose safety risks. To address these challenges, herein, the liquid-crystalline electrolytes with hexagonal phase were designed based on the self-assembly of amphiphilic molecules, which exhibit both high ionic conductivity and a high Li+ transference number. The hexagonal liquid crystal structure reconfigures the Li+ solvation structure and provides a transport pathway for the Li+ structural diffusion, facilitating the efficient transport of Li+ and contributing to the high ionic conductivity. Furthermore, the ordered arrangement of amphiphilic anion significantly restricts anion diffusion, resulting in an exceptionally high Li+ transference number of 0.92. Additionally, when utilizing NaV3O8 (NVO) as the anode and LiMn2O4 (LMO) as the cathode, the resultant full cell delivers impressive rate performance and stable cycling performance. This work highlights the potential of lyotropic liquid crystals in the development of high-performance quasi solid-state electrolytes for aqueous lithium-ion batteries and beyond.
中文翻译:
六方液晶作为水性锂离子电池的新兴准固态电解质
从便携式电子产品到电动汽车,不断增长的市场需求推动了锂离子电池的发展。然而,LIB 中使用的传统液体电解质受到泄漏、汽化和活性材料降解等问题的困扰,这些问题会影响性能并带来安全风险。为了应对这些挑战,本文基于两亲性分子的自组装设计了具有六方相的液晶电解质,其表现出高离子电导率和高 Li+ 转移数。六方液晶结构重新配置了 Li+ 溶剂化结构,并为 Li+ 结构扩散提供了传输途径,促进了 Li+ 的高效传输并有助于高离子电导率。此外,两亲性阴离子的有序排列显着限制了阴离子扩散,导致 Li+ 转移数达到 0.92 的极高值。此外,当使用 NaV3O8 (NVO) 作为阳极,使用 LiMn2O4 (LMO) 作为阴极时,所得的全电池可提供令人印象深刻的倍率性能和稳定的循环性能。这项工作强调了溶致液晶在开发用于水性锂离子电池及其他产品的高性能准固态电解质方面的潜力。
更新日期:2024-11-20
中文翻译:
六方液晶作为水性锂离子电池的新兴准固态电解质
从便携式电子产品到电动汽车,不断增长的市场需求推动了锂离子电池的发展。然而,LIB 中使用的传统液体电解质受到泄漏、汽化和活性材料降解等问题的困扰,这些问题会影响性能并带来安全风险。为了应对这些挑战,本文基于两亲性分子的自组装设计了具有六方相的液晶电解质,其表现出高离子电导率和高 Li+ 转移数。六方液晶结构重新配置了 Li+ 溶剂化结构,并为 Li+ 结构扩散提供了传输途径,促进了 Li+ 的高效传输并有助于高离子电导率。此外,两亲性阴离子的有序排列显着限制了阴离子扩散,导致 Li+ 转移数达到 0.92 的极高值。此外,当使用 NaV3O8 (NVO) 作为阳极,使用 LiMn2O4 (LMO) 作为阴极时,所得的全电池可提供令人印象深刻的倍率性能和稳定的循环性能。这项工作强调了溶致液晶在开发用于水性锂离子电池及其他产品的高性能准固态电解质方面的潜力。