当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Mo-N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157786 Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157786 Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu
The structural stability and Na+ diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na+ storage. Here, few-layer MoS2 nanocrystals were anchored on N-doped carbon nanosheets (MoS2 @NCs), which realizes fast Na+ storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS2 nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS2 @NCs, while the carbon nanosheets network supports the MoS2 @NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na+ diffusion. Density functional theory results show that the low diffusion barrier of MoS2 @NCs with Mo-N-C bonds accelerates the Na+ transfer kinetics. Consequently, MoS2 @NCs possesses superior rate capability of 307 mA h g−1 at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na+ (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology. In addition, the assembled MoS2 @NCs//Na3 V2 (PO4 )3 /C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.
中文翻译:
N 掺杂碳纳米片稳定的超细 MoS2 的界面 Mo-N 键合增强可实现超快耐用的钠离子半/满电池
二维层状材料的结构稳定性和 Na+ 扩散动力学对于提供高效的 Na+ 储存至关重要。在这里,少层 MoS2 纳米晶体锚定在 N 掺杂碳纳米片 (MoS2@NCs) 上,实现了快速的 Na+ 储存和较长的循环寿命。N 原子与 MoS2 纳米晶体和碳纳米片的紧密化学键 (Mo-N-C 键) 提高了 MoS2@NCs 的电子导电性和结构稳定性,而碳纳米片网络支持 MoS2@NCs 结构以减少体积效应,并为 Na+ 的快速扩散提供了表面主导的机制。密度泛函理论结果表明,具有 Mo-N-C 键的 MoS2@NCs 的低扩散势垒加速了 Na+ 转移动力学。因此,MoS2@NCs 在 20 A/g 时具有 307 mA h g-1 的优异倍率能力,并在 3,000 次循环中具有出色的长期稳定性。通过原位 EIS 和非原位 XRD 技术阐明了可逆的 Na+(去)插入行为。此外,组装好的 MoS2@NCs//Na3V2(PO4)3/C 全电池也表现出较高的可逆容量和良好的循环稳定性。这项工作为优化可用于高能量密度可充电 SIB 的二维分层材料开辟了一条新路线。
更新日期:2024-11-19
中文翻译:
N 掺杂碳纳米片稳定的超细 MoS2 的界面 Mo-N 键合增强可实现超快耐用的钠离子半/满电池
二维层状材料的结构稳定性和 Na+ 扩散动力学对于提供高效的 Na+ 储存至关重要。在这里,少层 MoS2 纳米晶体锚定在 N 掺杂碳纳米片 (MoS2@NCs) 上,实现了快速的 Na+ 储存和较长的循环寿命。N 原子与 MoS2 纳米晶体和碳纳米片的紧密化学键 (Mo-N-C 键) 提高了 MoS2@NCs 的电子导电性和结构稳定性,而碳纳米片网络支持 MoS2@NCs 结构以减少体积效应,并为 Na+ 的快速扩散提供了表面主导的机制。密度泛函理论结果表明,具有 Mo-N-C 键的 MoS2@NCs 的低扩散势垒加速了 Na+ 转移动力学。因此,MoS2@NCs 在 20 A/g 时具有 307 mA h g-1 的优异倍率能力,并在 3,000 次循环中具有出色的长期稳定性。通过原位 EIS 和非原位 XRD 技术阐明了可逆的 Na+(去)插入行为。此外,组装好的 MoS2@NCs//Na3V2(PO4)3/C 全电池也表现出较高的可逆容量和良好的循环稳定性。这项工作为优化可用于高能量密度可充电 SIB 的二维分层材料开辟了一条新路线。