当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bio-inspired sustainable electrospun quantum nanostructures for high quality factor enabled face masks and self-powered intelligent theranostics
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157752 Loganathan Veeramuthu, Ren-Jie Weng, Wei-Hung Chiang, Archana Pandiyan, Fu-Jie Liu, Fang-Cheng Liang, G. Ranjith Kumar, Hua-Yi Hsu, Yu-Ci Chen, Wen-Yinn Lin, Yao-Chun Tang, Wan-Rong Lin, Ren-Jei Chung, Tao Zhou, Chi-Ching Kuo
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157752 Loganathan Veeramuthu, Ren-Jie Weng, Wei-Hung Chiang, Archana Pandiyan, Fu-Jie Liu, Fang-Cheng Liang, G. Ranjith Kumar, Hua-Yi Hsu, Yu-Ci Chen, Wen-Yinn Lin, Yao-Chun Tang, Wan-Rong Lin, Ren-Jei Chung, Tao Zhou, Chi-Ching Kuo
Plastic pollution, the energy crisis, and climate change are significant global challenges that threaten human sustainability and social development. Additionally, addressing pollution while simultaneously promoting valorization techniques for the development of effective personal protective equipment to mitigate the transmission of the SARS-CoV-2 virus poses a challenge, particularly in maintaining wearer comfort. Current advancements in intelligent future therapies focus on the incorporation of quantum nanostructures with theranostic capabilities that are compatible with the skin, reduce wear interference, and facilitate easy integration into minimally invasive surgical procedures. To address these challenges, we propose a win–win strategy that enables microplasma technology and high-throughput electrospinning technology to prepare sustainable self-powered angiogenesis inspired ultrafine nanofibers (AINFs). The proposed quantum nanostructure-anchored AINFs are designed to support the development of flex-insensitive white light-emitting optoelectronics (92 % at 500 cycles), COVID-19 face masks of record high-quality factors (0.167 Pa−1 @ PM0.2 ), and highly compatible large-scale self-powered theranostic capabilities (2694 pmV−1 ). These innovations align with the urgent demands of a circular economy and foster environmentally sustainable applications within the Internet of Medical Things.
中文翻译:
仿生可持续静电纺丝量子纳米结构,用于实现高质量因子的口罩和自供电智能治疗诊断学
塑料污染、能源危机和气候变化是威胁人类可持续性和社会发展的重大全球挑战。此外,在解决污染问题的同时推广价值化技术以开发有效的个人防护设备以减轻 SARS-CoV-2 病毒的传播是一项挑战,尤其是在保持佩戴者的舒适度方面。智能未来疗法的当前进展集中在将量子纳米结构与治疗诊断能力相结合,这些能力与皮肤相容,减少磨损干扰,并有助于轻松整合到微创外科手术中。为了应对这些挑战,我们提出了一种双赢战略,使微等离子体技术和高通量静电纺丝技术能够制备可持续的自动力血管生成启发的超细纳米纤维 (AINF)。拟议的量子纳米结构锚定 AINF 旨在支持对弯曲不敏感的白光发光光电子学(92 次循环时为 500%)、具有创纪录高质量因子的 COVID-19 口罩 (0.167 Pa-1 @ PM0.2) 和高度兼容的大规模自供电治疗诊断能力 (2694 pmV-1)。这些创新符合循环经济的迫切需求,并促进了医疗物联网中环境可持续的应用。
更新日期:2024-11-19
中文翻译:
仿生可持续静电纺丝量子纳米结构,用于实现高质量因子的口罩和自供电智能治疗诊断学
塑料污染、能源危机和气候变化是威胁人类可持续性和社会发展的重大全球挑战。此外,在解决污染问题的同时推广价值化技术以开发有效的个人防护设备以减轻 SARS-CoV-2 病毒的传播是一项挑战,尤其是在保持佩戴者的舒适度方面。智能未来疗法的当前进展集中在将量子纳米结构与治疗诊断能力相结合,这些能力与皮肤相容,减少磨损干扰,并有助于轻松整合到微创外科手术中。为了应对这些挑战,我们提出了一种双赢战略,使微等离子体技术和高通量静电纺丝技术能够制备可持续的自动力血管生成启发的超细纳米纤维 (AINF)。拟议的量子纳米结构锚定 AINF 旨在支持对弯曲不敏感的白光发光光电子学(92 次循环时为 500%)、具有创纪录高质量因子的 COVID-19 口罩 (0.167 Pa-1 @ PM0.2) 和高度兼容的大规模自供电治疗诊断能力 (2694 pmV-1)。这些创新符合循环经济的迫切需求,并促进了医疗物联网中环境可持续的应用。