当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metal-organic framework derived Co@N/C with enhanced oxygen reduction reaction in direct borohydride fuel cells
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ces.2024.120953 Lianke Zhang, Lei Zhang, Dandan Li, Haiying Qin, Hualiang Ni, Hongzhong Chi, Junjing He, Yan He
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ces.2024.120953 Lianke Zhang, Lei Zhang, Dandan Li, Haiying Qin, Hualiang Ni, Hongzhong Chi, Junjing He, Yan He
Developing efficient and durable non-precious metals catalysts is crucial for fuel cells. Herein, we synthesize nitrogen-doped carbon-encapsulated metal cobalt nanoparticles with core–shell structure (Co@N/C-Joule) catalyst by carbothermal shock (CTS) pyrolysis of ZIF-67 under argon atmosphere. The Co@N/C-Joule exhibits superior catalytic activity and stability for the oxygen reduction reaction (ORR) in alkaline electrolyte. Co@N/C-Joule demonstrates a half-wave potential of 0.84 V (vs. the reversible hydrogen electrode, RHE). The Co@N/C-Joule also exhibits superior stability, with only a 4 mV negative shift after 30,000 cyclic voltammetry cycles. The direct borohydride fuel cells using the Co@N/C-Joule cathode achieves a maximum power density of 389 mW cm−2 at 60°C. The rapid heating and cooling rate of CTS enables the production of small-sized Co@N/C nanocatalysts with ultra-thin nitrogen-doped graphite layer coating on Co particles, thereby increasing the surface density of active sites on Co nanoparticles and Co-N sites, which leads to improved ORR performance.
中文翻译:
在直接硼氢化物燃料电池中具有增强氧还原反应的 Co@N/C 衍生的金属有机框架
开发高效耐用的非贵金属催化剂对于燃料电池至关重要。在此,我们在氩气气氛下通过碳热冲击 (CTS) 对 ZIF-67 进行热解,合成了具有核壳结构 (Co@N/C-Joule) 催化剂的氮掺杂碳包埋金属钴纳米颗粒。Co@N/C-焦耳在碱性电解质中表现出优异的催化活性和氧还原反应 (ORR) 稳定性。Co@N/C-焦耳的半波电位为 0.84 V(相对于可逆氢电极 RHE)。Co@N/C-焦耳还表现出卓越的稳定性,在 30,000 个循环伏安法循环后只有 4 mV 的负漂移。使用 Co@N/C-焦耳阴极的直接硼氢化物燃料电池在 60°C 时可实现 389 mW cm-2 的最大功率密度。 CTS 的快速加热和冷却速率使其能够在 Co 颗粒上生产具有超薄氮掺杂石墨层涂层的小型 Co@N/C 纳米催化剂,从而提高 Co 纳米颗粒和 Co-N 位点上活性位点的表面密度,从而提高 ORR 性能。
更新日期:2024-11-19
中文翻译:
在直接硼氢化物燃料电池中具有增强氧还原反应的 Co@N/C 衍生的金属有机框架
开发高效耐用的非贵金属催化剂对于燃料电池至关重要。在此,我们在氩气气氛下通过碳热冲击 (CTS) 对 ZIF-67 进行热解,合成了具有核壳结构 (Co@N/C-Joule) 催化剂的氮掺杂碳包埋金属钴纳米颗粒。Co@N/C-焦耳在碱性电解质中表现出优异的催化活性和氧还原反应 (ORR) 稳定性。Co@N/C-焦耳的半波电位为 0.84 V(相对于可逆氢电极 RHE)。Co@N/C-焦耳还表现出卓越的稳定性,在 30,000 个循环伏安法循环后只有 4 mV 的负漂移。使用 Co@N/C-焦耳阴极的直接硼氢化物燃料电池在 60°C 时可实现 389 mW cm-2 的最大功率密度。 CTS 的快速加热和冷却速率使其能够在 Co 颗粒上生产具有超薄氮掺杂石墨层涂层的小型 Co@N/C 纳米催化剂,从而提高 Co 纳米颗粒和 Co-N 位点上活性位点的表面密度,从而提高 ORR 性能。