当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Catalytic CO oxidation on CeO2-based materials: Modification strategies, structure-performance relationships, challenges and prospects
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.seppur.2024.130556 Shuyi Liu, Yinghao Xue, Yan Jia, Hanxue Wang, Qing Nie, Jianwei Fan
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.seppur.2024.130556 Shuyi Liu, Yinghao Xue, Yan Jia, Hanxue Wang, Qing Nie, Jianwei Fan
Catalytic oxidation of carbon monoxide (CO) has gained increasing interest in recent years due to its promising applications. Cerium-based catalysts have been widely employed in CO oxidation processes due to their reversible oxygen storage/release capacity (OSC), excellent redox activity, and the most abundant rare earth element in the crust (46 ppm). However, conventional CeO2 catalysts still face challenges of insufficient activity and poor stability. Herein, strategies to enhance the activity of CeO2 catalysts are detailed, including crystal facet engineering, metal-support modification, and heteroatom doping. In conclusion, these strategies aim to increase the number of oxygen vacancies, optimize surface active sites, and strengthen the metal-support interaction, thereby significantly improving the activity of catalytic CO oxidation.
中文翻译:
CeO2 基材料催化 CO 氧化:改性策略、结构-性能关系、挑战和前景
由于一氧化碳 (CO) 的催化氧化应用前景广阔,近年来越来越受到关注。铈基催化剂因其可逆的氧储存/释放能力 (OSC)、优异的氧化还原活性以及地壳中最丰富的稀土元素 (46 ppm) 而被广泛用于 CO 氧化过程。然而,常规 CeO2 催化剂仍面临活性不足、稳定性差等挑战。本文详细介绍了增强 CeO2 催化剂活性的策略,包括晶体刻面工程、金属载体改性和杂原子掺杂。总之,这些策略旨在增加氧空位的数量,优化表面活性位点,并加强金属-载体相互作用,从而显著提高催化 CO 氧化的活性。
更新日期:2024-11-19
中文翻译:
CeO2 基材料催化 CO 氧化:改性策略、结构-性能关系、挑战和前景
由于一氧化碳 (CO) 的催化氧化应用前景广阔,近年来越来越受到关注。铈基催化剂因其可逆的氧储存/释放能力 (OSC)、优异的氧化还原活性以及地壳中最丰富的稀土元素 (46 ppm) 而被广泛用于 CO 氧化过程。然而,常规 CeO2 催化剂仍面临活性不足、稳定性差等挑战。本文详细介绍了增强 CeO2 催化剂活性的策略,包括晶体刻面工程、金属载体改性和杂原子掺杂。总之,这些策略旨在增加氧空位的数量,优化表面活性位点,并加强金属-载体相互作用,从而显著提高催化 CO 氧化的活性。