当前位置:
X-MOL 学术
›
Proc. Natl. Acad. Sci. U.S.A.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Symmetry engineering in 2D bioelectronics facilitating augmented biosensing interfaces
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-18 , DOI: 10.1073/pnas.2412684121 Yizhang Wu, Yihan Liu, Yuan Li, Ziquan Wei, Sicheng Xing, Yunlang Wang, Dashuai Zhu, Ziheng Guo, Anran Zhang, Gongkai Yuan, Zhibo Zhang, Ke Huang, Yong Wang, Guorong Wu, Ke Cheng, Wubin Bai
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-18 , DOI: 10.1073/pnas.2412684121 Yizhang Wu, Yihan Liu, Yuan Li, Ziquan Wei, Sicheng Xing, Yunlang Wang, Dashuai Zhu, Ziheng Guo, Anran Zhang, Gongkai Yuan, Zhibo Zhang, Ke Huang, Yong Wang, Guorong Wu, Ke Cheng, Wubin Bai
Symmetry lies at the heart of two-dimensional (2D) bioelectronics, determining material properties at the fundamental level. Breaking the symmetry allows emergent functionalities and effects. However, symmetry modulation in 2D bioelectronics and the resultant applications have been largely overlooked. Here, we devise an oxidized architectural MXene, referred to as oxidized MXene (OXene), that couples orbit symmetric breaking with inverse symmetric breaking to entitle the optimized interfacial impedance and Schottky-induced piezoelectric effects. The resulting OXene validates applications ranging from microelectrode arrays, gait analysis, active transistor matrix, and wireless signaling transmission, which enables high-fidelity signal transmission and reconfigurable logic gates. Furthermore, OXene interfaces were investigated in both rodent and porcine myocardium, featuring high-quality and spatiotemporally resolved physiological recordings, while accurate differentiated predictions, enabled via various machine learning pipelines.
中文翻译:
二维生物电子学中的对称工程促进增强的生物传感接口
对称性是二维 (2D) 生物电子学的核心,它决定了基本层面的材料特性。打破对称性允许出现功能和效果。然而,二维生物电子学中的对称调控及其由此产生的应用在很大程度上被忽视了。在这里,我们设计了一种氧化的建筑 MXene,称为氧化 MXene (OXene),它将轨道对称断裂与逆对称断裂耦合,以获得优化的界面阻抗和肖特基诱导的压电效应。由此产生的 OXene 验证了从微电极阵列、步态分析、有源晶体管矩阵和无线信号传输等应用,从而实现了高保真信号传输和可重构逻辑门。此外,在啮齿动物和猪心肌中研究了 OXene 界面,具有高质量和时空分辨的生理记录,同时通过各种机器学习管道实现了准确的差异化预测。
更新日期:2024-11-18
中文翻译:
二维生物电子学中的对称工程促进增强的生物传感接口
对称性是二维 (2D) 生物电子学的核心,它决定了基本层面的材料特性。打破对称性允许出现功能和效果。然而,二维生物电子学中的对称调控及其由此产生的应用在很大程度上被忽视了。在这里,我们设计了一种氧化的建筑 MXene,称为氧化 MXene (OXene),它将轨道对称断裂与逆对称断裂耦合,以获得优化的界面阻抗和肖特基诱导的压电效应。由此产生的 OXene 验证了从微电极阵列、步态分析、有源晶体管矩阵和无线信号传输等应用,从而实现了高保真信号传输和可重构逻辑门。此外,在啮齿动物和猪心肌中研究了 OXene 界面,具有高质量和时空分辨的生理记录,同时通过各种机器学习管道实现了准确的差异化预测。