Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Grothendieck inequalities characterize converses to the polynomial method
Quantum ( IF 5.1 ) Pub Date : 2024-11-18 , DOI: 10.22331/q-2024-11-18-1526 Jop Briët, Francisco Escudero Gutiérrez, Sander Gribling
Quantum ( IF 5.1 ) Pub Date : 2024-11-18 , DOI: 10.22331/q-2024-11-18-1526 Jop Briët, Francisco Escudero Gutiérrez, Sander Gribling
A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. Here we show that such a result does not generalize to quartic polynomials and 2-query algorithms, even when we allow for additive approximations. We also show that the additive approximation implied by their result is tight for bounded bilinear forms, which gives a new characterization of the Grothendieck constant in terms of 1-query quantum algorithms. Along the way we provide reformulations of the completely bounded norm of a form, and its dual norm.
中文翻译:
Grothendieck 不等式表征与多项式方法相反
Aaronson 等人 (CCC'16) 令人惊讶的“与多项式方法相反”表明,任何有界二次多项式都可以通过 1 查询算法精确计算,直到与著名的 Grothendieck 常数相关的通用乘法因子。在这里,我们表明这样的结果并不能推广到四次多项式和 2 查询算法,即使我们允许加法近似。我们还表明,对于有界双线性形式,他们的结果隐含的加法近似是紧密的,这给出了 1 查询量子算法对 Grothendieck 常数的新表征。在此过程中,我们提供了对形式的完全有界规范及其双重规范的重新表述。
更新日期:2024-11-19
中文翻译:
Grothendieck 不等式表征与多项式方法相反
Aaronson 等人 (CCC'16) 令人惊讶的“与多项式方法相反”表明,任何有界二次多项式都可以通过 1 查询算法精确计算,直到与著名的 Grothendieck 常数相关的通用乘法因子。在这里,我们表明这样的结果并不能推广到四次多项式和 2 查询算法,即使我们允许加法近似。我们还表明,对于有界双线性形式,他们的结果隐含的加法近似是紧密的,这给出了 1 查询量子算法对 Grothendieck 常数的新表征。在此过程中,我们提供了对形式的完全有界规范及其双重规范的重新表述。