当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CME Arrival Time Prediction Based on Coronagraph Observations and Machine-learning Techniques
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2024-11-19 , DOI: 10.3847/1538-4357/ad82e5
Yucong Li, Yi Yang, Fang Shen, Bofeng Tang, Rongpei Lin

The timely and precise prediction of the arrival time of coronal mass ejections (CMEs) is crucial in mitigating their potential adverse effects. In this study, we present a novel prediction method utilizing a deep-learning framework coupled with physical characteristics of CMEs and background solar wind. Time series images from synchronized solar white-light and EUV observations of 156 geoeffective CME events during 2000–2020 are collected for this study, according to the Richardson and Cane interplanetary CME directory and the SOHO/LASCO CME catalog of NASA/CDAW. The CME parameters are obtained from the CDAW website and the solar wind parameters are from OMNI2 website. The observational images are first fed into a convolutional neural network (CNN) to train a regression model as Model A. The results generated by the original CNN are then integrated with 11 selected physical parameters in additional neural network layers of Model B to improve the predictions. Under optimal configurations, Model A achieves a minimum mean absolute error (MAE) of 7.87 hr, whereas Model B yields a minimum MAE of 5.12 hr. During model training, we employed tenfold cross validation to reduce the occasionality of biased data. The average MAE of Model B on 10 folds is 33% lower than that of model A. The results demonstrate that combining the imaging observations with the physical properties of CMEs and background solar wind to train a machine-learning model can benefit the forecasting of CME arrival times.

中文翻译:


基于日冕仪观测和机器学习技术的 CME 到达时间预测



及时准确地预测日冕物质抛射 (CME) 的到达时间对于减轻其潜在的不利影响至关重要。在这项研究中,我们提出了一种新的预测方法,该方法利用深度学习框架结合 CME 的物理特性和背景太阳风。根据 Richardson 和 Cane 行星际 CME 目录以及 NASA/CDAW 的 SOHO/LASCO CME 目录,本研究收集了 2000 年至 2020 年期间 156 次地球有效 CME 事件的同步太阳白光和 EUV 观测的时间序列图像。CME 参数来自 CDAW 网站,太阳风参数来自 OMNI2 网站。首先将观察图像输入卷积神经网络 (CNN),以将回归模型训练为模型 A。然后将原始 CNN 生成的结果与模型 B 的其他神经网络层中的 11 个选定物理参数集成,以改进预测。在最佳配置下,模型 A 的最小平均绝对误差 (MAE) 为 7.87 小时,而模型 B 的最小 MAE 为 5.12 小时。在模型训练期间,我们采用了 10 倍交叉验证来减少偏差数据的偶然性。模型 B 在 10 倍时的平均 MAE 比模型 A 低 33%。结果表明,将成像观测与 CME 的物理特性和背景太阳风相结合以训练机器学习模型可以有利于预测 CME 到达时间。
更新日期:2024-11-19
down
wechat
bug