当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Existence and absence of Killing horizons in static solutions with symmetries
Classical and Quantum Gravity ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1088/1361-6382/ad8ea4
Hideki Maeda and Cristián Martínez

Without specifying a matter field nor imposing energy conditions, we study Killing horizons in -dimensional static solutions in general relativity with an -dimensional Einstein base manifold. Assuming linear relations and near a Killing horizon between the energy density ρ, radial pressure , and tangential pressure p2 of the matter field, we prove that any non-vacuum solution satisfying ( ) or does not admit a horizon as it becomes a curvature singularity. For and , non-vacuum solutions admit Killing horizons, on which there exists a matter field only for and , which are of the Hawking–Ellis type I and type II, respectively. Differentiability of the metric on the horizon depends on the value of , and non-analytic extensions beyond the horizon are allowed for . In particular, solutions can be attached to the Schwarzschild–Tangherlini-type vacuum solution at the Killing horizon in at least a regular manner without a lightlike thin shell. We generalize some of those results in Lovelock gravity with a maximally symmetric base manifold.

中文翻译:


对称性静态解中 Killing 视界的存在和不存在



在不指定物质场或施加能量条件的情况下,我们用 -维爱因斯坦基流形研究广义相对论中维静态解中的 Killing 视界。假设物质场的能量密度 ρ、径向压力和切向压力 p2 之间存在线性关系并且接近杀戮视界,我们证明任何非真空解都满足 ( ) 或不承认视界,因为它成为曲率奇点。对于 和 ,非真空解接受杀戮视界,其中仅存在 和 的物质场,它们分别属于霍金-埃利斯类型 I 和 II 型。指标在水平上的可微性取决于 的值,并且允许超出水平的非分析扩展。特别是,溶液可以至少以规则的方式连接到杀戮视界的 Schwarzschild-Tangherlini 型真空溶液上,而无需轻薄壳。我们将其中一些结果推广到具有最大对称基础流形的 Lovelock 引力中。
更新日期:2024-11-19
down
wechat
bug