当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A rapid multi-modal parameter estimation technique for LISA
Classical and Quantum Gravity ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1088/1361-6382/ad8f26
Charlie Hoy, Connor R Weaving, Laura K Nuttall, Ian Harry

The laser interferometer space antenna (LISA) will observe gravitational-wave (GW) signals from a wide range of sources, including massive black hole binaries (MBHBs). Although numerous techniques have been developed to perform Bayesian inference for LISA, they are often computationally expensive; analyses often take at least ∼1 month on a single CPU, even when using accelerated techniques. Not only does this make it difficult to concurrently analyse more than one GW signal, it also makes it challenging to rapidly produce parameter estimates for possible electromagnetic follow-up campaigns. simple-pe was recently developed to produce rapid parameter estimates for GW signals observed with ground-based GW detectors. In this work, we extend simple-pe to produce rapid parameter estimates for LISA sources, including the effects of higher order multipole moments. We show that simple-pe infers the source properties of massive black hole binaries in zero-noise at least 100× faster than existing techniques; 12 h on a single CPU. We further demonstrate that simple-pe can be applied before existing Bayesian techniques to mitigate biases in multi-modal parameter estimation analyses of MBHBs.

中文翻译:


LISA 的快速多模态参数技术估计



激光干涉仪空间天线 (LISA) 将观测来自各种来源的引力波 (GW) 信号,包括大质量黑洞双星 (MBHB)。尽管已经开发了许多技术来为 LISA 执行贝叶斯推理,但它们的计算成本通常很高;在单个 CPU 上进行分析通常至少需要 ∼1 个月,即使使用加速技术也是如此。这不仅使得同时分析多个 GW 信号变得困难,而且还使得为可能的电磁后续活动快速生成参数估计变得具有挑战性。Simple-PE 是最近开发的,用于对使用地面 GW 探测器观察到的 GW 信号进行快速参数估计。在这项工作中,我们扩展了 simple-pe 以生成 LISA 源的快速参数估计,包括高阶多极矩的影响。我们表明,simple-pe 在零噪声中推断大质量黑洞双星的源属性至少比现有技术快 ∼100×; 在单个 CPU 上 ∼12 小时。我们进一步证明,simple-pe 可以在现有的贝叶斯技术之前应用,以减轻 MBHBs 多模态参数估计分析中的偏差。
更新日期:2024-11-19
down
wechat
bug