当前位置: X-MOL 学术Des. Codes Cryptogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Almost tight security in lattices with polynomial moduli—PRF, IBE, all-but-many LTF, and more
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-11-19 , DOI: 10.1007/s10623-024-01523-6
Zhedong Wang, Qiqi Lai, Feng-Hao Liu

Achieving tight security is a fundamental task in cryptography. While one of the most important purposes of this task is to improve the overall efficiency of a construction (by allowing smaller security parameters), many current lattice-based instantiations do not completely achieve the goal. Particularly, a super-polynomial modulus seems to be necessary in all prior work for (almost) tight schemes that allow the adversary to conduct queries, such as PRF, IBE, and Signatures. As the super-polynomial modulus would affect the noise-to-modulus ratio and thus increase the parameters, this might cancel out the advantages (in efficiency) brought from the tighter analysis. To determine the full power of tight security/analysis in lattices, it is necessary to determine whether the super-polynomial modulus restriction is inherent. In this work, we remove the super-polynomial modulus restriction for many important primitives—PRF, IBE, all-but-many Lossy Trapdoor Functions, and Signatures. The crux relies on an improvement over the framework of Boyen and Li (Asiacrypt 16), and an almost tight reduction from LWE to LWR, which improves prior work by Alwen et al. (Eurocrypt 13), Bogdanov et al. (TCC 16), and Bai et al. (Asiacrypt 15). By combining these two advances, we are able to derive these almost tight schemes under LWE with a polynomial modulus.



中文翻译:


在具有多项式模量的晶格中几乎具有严格的安全性 — PRF、IBE、全多 LTF 等



实现严格的安全性是加密学中的一项基本任务。虽然这项任务最重要的目的之一是提高结构的整体效率(通过允许更小的安全参数),但当前许多基于 lattice 的实例化并不能完全实现目标。特别是,对于允许对手进行查询的(几乎)紧密方案(例如 PRF、IBE 和 Signatures),超多项式模量似乎在所有先前的工作中都是必需的。由于超多项式模量会影响噪声模数比,从而增加参数,这可能会抵消更严格的分析带来的优势(效率)。为了确定 Lattice 中严格安全性/分析的全部功能,有必要确定超多项式模数限制是否是固有的。在这项工作中,我们消除了许多重要基元的超多项式模数限制——PRF、IBE、所有但许多有损陷门函数和签名。关键在于对 Boyen 和 Li (Asiacrypt 16) 框架的改进,以及从 LWE 到 LWR 的几乎紧密的简化,这改进了 Alwen 等人 (Eurocrypt 13)、Bogdanov 等人 (TCC 16) 和 Bai 等人 (Asiacrypt 15) 的先前工作。通过结合这两项进展,我们能够推导出这些在具有多项式模量的 LWE 下几乎紧密的方案。

更新日期:2024-11-19
down
wechat
bug