当前位置: X-MOL 学术Noûs › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A style guide for the structuralist
Noûs ( IF 1.8 ) Pub Date : 2024-11-18 , DOI: 10.1111/nous.12537
Lucy Carr

Ontic structuralists claim that there are no individual objects, and that reality should instead be thought of as a “web of relations”. It is difficult to make this metaphysical picture precise, however, since languages usually characterize the world by describing the objects that exist in it. This paper proposes a solution to the problem; I argue that when discourse is reformulated in the language of the calculus of relations ‐ an algebraic logic developed by Alfred Tarski ‐ it can be interpreted without presupposing the existence of objects. What is distinctive about the language of the calculus is that it contains no operator that resembles a quantifier, and yet it can be used to paraphrase any sentence expressible in first‐order logic. Since the use of a first‐order quantifier (or some similar operator) is usually what establishes commitment to an ontology of objects, and since the calculus of relations eschews the quantifier in favor of a composition operator that can be given a natural interpretation consistent with structuralist metaphysics, the calculus is an ideal language for the structuralist to use to describe the world.

中文翻译:


结构主义者的风格指南



本体结构论者声称没有单独的对象,现实应该被认为是一个“关系网”。然而,很难使这种形而上学的画面精确,因为语言通常通过描述存在于其中的物体来描述世界。本文提出了一种解决方案;我认为,当话语用关系微积分的语言——阿尔弗雷德·塔尔斯基(Alfred Tarski)发展的一种代数逻辑——被重新表述时,它可以在不预设对象存在的情况下被解释。微积分语言的独特之处在于它不包含类似于量词的运算符,但它可以用来解释任何可以用一阶逻辑表达的句子。由于使用一阶量词(或一些类似的运算符)通常是建立对对象本体论的承诺的原因,并且由于关系微积分避开了量词,而支持可以被赋予与结构主义形而上学一致的自然解释的组合运算符,因此微积分是结构主义者用来描述世界的理想语言。
更新日期:2024-11-18
down
wechat
bug