当前位置:
X-MOL 学术
›
Front. Marine Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Promoting best practices in ocean forecasting through an Operational Readiness Level
Frontiers in Marine Science ( IF 2.8 ) Pub Date : 2024-11-18 , DOI: 10.3389/fmars.2024.1443284 E. Alvarez Fanjul, S. Ciliberti, J. Pearlman, K. Wilmer-Becker, P. Bahurel, F. Ardhuin, A. Arnaud, K. Azizzadenesheli, R. Aznar, M. Bell, L. Bertino, S. Behera, G. Brassington, J. B. Calewaert, A. Capet, E. Chassignet, S. Ciavatta, M. Cirano, E. Clementi, L. Cornacchia, G. Cossarini, G. Coro, S. Corney, F. Davidson, M. Drevillon, Y. Drillet, R. Dussurget, G. El Serafy, G. Fearon, K. Fennel, D. Ford, O. Le Galloudec, X. Huang, J. M. Lellouche, P. Heimbach, F. Hernandez, P. Hogan, I. Hoteit, S. Joseph, S. Josey, P. -Y. Le Traon, S. Libralato, M. Mancini, M. Martin, P. Matte, T. McConnell, A. Melet, Y. Miyazawa, A. M. Moore, A. Novellino, F. O’Donncha, A. Porter, F. Qiao, H. Regan, J. Robert-Jones, S. Sanikommu, A. Schiller, J. Siddorn, M. G. Sotillo, J. Staneva, C. Thomas-Courcoux, P. Thupaki, M. Tonani, J. M. Garcia Valdecasas, J. Veitch, K. von Schuckmann, L. Wan, J. Wilkin, A. Zhong, R. Zufic
Frontiers in Marine Science ( IF 2.8 ) Pub Date : 2024-11-18 , DOI: 10.3389/fmars.2024.1443284 E. Alvarez Fanjul, S. Ciliberti, J. Pearlman, K. Wilmer-Becker, P. Bahurel, F. Ardhuin, A. Arnaud, K. Azizzadenesheli, R. Aznar, M. Bell, L. Bertino, S. Behera, G. Brassington, J. B. Calewaert, A. Capet, E. Chassignet, S. Ciavatta, M. Cirano, E. Clementi, L. Cornacchia, G. Cossarini, G. Coro, S. Corney, F. Davidson, M. Drevillon, Y. Drillet, R. Dussurget, G. El Serafy, G. Fearon, K. Fennel, D. Ford, O. Le Galloudec, X. Huang, J. M. Lellouche, P. Heimbach, F. Hernandez, P. Hogan, I. Hoteit, S. Joseph, S. Josey, P. -Y. Le Traon, S. Libralato, M. Mancini, M. Martin, P. Matte, T. McConnell, A. Melet, Y. Miyazawa, A. M. Moore, A. Novellino, F. O’Donncha, A. Porter, F. Qiao, H. Regan, J. Robert-Jones, S. Sanikommu, A. Schiller, J. Siddorn, M. G. Sotillo, J. Staneva, C. Thomas-Courcoux, P. Thupaki, M. Tonani, J. M. Garcia Valdecasas, J. Veitch, K. von Schuckmann, L. Wan, J. Wilkin, A. Zhong, R. Zufic
Predicting the ocean state in a reliable and interoperable way, while ensuring high-quality products, requires forecasting systems that synergistically combine science-based methodologies with advanced technologies for timely, user-oriented solutions. Achieving this objective necessitates the adoption of best practices when implementing ocean forecasting services, resulting in the proper design of system components and the capacity to evolve through different levels of complexity. The vision of OceanPrediction Decade Collaborative Center, endorsed by the UN Decade of Ocean Science for Sustainable Development 2021-2030, is to support this challenge by developing a “predicted ocean based on a shared and coordinated global effort” and by working within a collaborative framework that encompasses worldwide expertise in ocean science and technology. To measure the capacity of ocean forecasting systems, the OceanPrediction Decade Collaborative Center proposes a novel approach based on the definition of an Operational Readiness Level (ORL). This approach is designed to guide and promote the adoption of best practices by qualifying and quantifying the overall operational status. Considering three identified operational categories - production, validation, and data dissemination - the proposed ORL is computed through a cumulative scoring system. This method is determined by fulfilling specific criteria, starting from a given base level and progressively advancing to higher levels. The goal of ORL and the computed scores per operational category is to support ocean forecasters in using and producing ocean data, information, and knowledge. This is achieved through systems that attain progressively higher levels of readiness, accessibility, and interoperability by adopting best practices that will be linked to the future design of standards and tools. This paper discusses examples of the application of this methodology, concluding on the advantages of its adoption as a reference tool to encourage and endorse services in joining common frameworks.
中文翻译:
通过运营就绪级别推广海洋预报的最佳实践
以可靠和可互操作的方式预测海洋状态,同时确保高质量的产品,需要预报系统将基于科学的方法与先进技术协同结合,以提供及时、面向用户的解决方案。要实现这一目标,需要在实施海洋预报服务时采用最佳实践,从而正确设计系统组件,并能够适应不同程度的复杂性。海洋预测十年合作中心的愿景得到了联合国海洋科学促进可持续发展十年 2021-2030 的认可,旨在通过开发“基于共享和协调的全球努力预测的海洋”并在包含全球海洋科学和技术专业知识的协作框架内工作来支持这一挑战。为了测量海洋预报系统的能力,OceanPrediction Decade Collaborative Center 提出了一种基于运营准备水平 (ORL) 定义的新方法。这种方法旨在通过对整体运营状态进行限定和量化来指导和促进最佳实践的采用。考虑到三个已确定的操作类别 - 生产、验证和数据传播 - 拟议的 ORL 是通过累积评分系统计算的。这种方法是通过满足特定标准来确定的,从给定的基本级别开始,并逐步发展到更高的级别。ORL 和每个业务类别的计算分数的目标是支持海洋预报员使用和生成海洋数据、信息和知识。 这是通过采用与未来标准和工具设计相关的最佳实践,逐步实现更高级别的就绪性、可访问性和互操作性的系统来实现的。本文讨论了这种方法的应用示例,总结了将其用作参考工具以鼓励和认可服务加入通用框架的优势。
更新日期:2024-11-18
中文翻译:
通过运营就绪级别推广海洋预报的最佳实践
以可靠和可互操作的方式预测海洋状态,同时确保高质量的产品,需要预报系统将基于科学的方法与先进技术协同结合,以提供及时、面向用户的解决方案。要实现这一目标,需要在实施海洋预报服务时采用最佳实践,从而正确设计系统组件,并能够适应不同程度的复杂性。海洋预测十年合作中心的愿景得到了联合国海洋科学促进可持续发展十年 2021-2030 的认可,旨在通过开发“基于共享和协调的全球努力预测的海洋”并在包含全球海洋科学和技术专业知识的协作框架内工作来支持这一挑战。为了测量海洋预报系统的能力,OceanPrediction Decade Collaborative Center 提出了一种基于运营准备水平 (ORL) 定义的新方法。这种方法旨在通过对整体运营状态进行限定和量化来指导和促进最佳实践的采用。考虑到三个已确定的操作类别 - 生产、验证和数据传播 - 拟议的 ORL 是通过累积评分系统计算的。这种方法是通过满足特定标准来确定的,从给定的基本级别开始,并逐步发展到更高的级别。ORL 和每个业务类别的计算分数的目标是支持海洋预报员使用和生成海洋数据、信息和知识。 这是通过采用与未来标准和工具设计相关的最佳实践,逐步实现更高级别的就绪性、可访问性和互操作性的系统来实现的。本文讨论了这种方法的应用示例,总结了将其用作参考工具以鼓励和认可服务加入通用框架的优势。