当前位置:
X-MOL 学术
›
Int. J. Fatigue
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation
International Journal of Fatigue ( IF 5.7 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.ijfatigue.2024.108709 Qian Xiao, Xilin Wang, Daoyun Chen, Xinjian Zhou, Xinlong Liu, Wenbin Yang
International Journal of Fatigue ( IF 5.7 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.ijfatigue.2024.108709 Qian Xiao, Xilin Wang, Daoyun Chen, Xinjian Zhou, Xinlong Liu, Wenbin Yang
A new nonlinear fatigue cumulative damage model is proposed to address the challenge of insufficient accuracy in calculations stemming from nonlinear cumulative damage models that fail to account for strength degradation effects and interactions among multi-level loads. This model, an enhancement of the Aeran fatigue damage model, incorporates stress ratios to capture load interactions and includes a logarithmic residual strength degradation model extended to multi-level stress states. Comparative analysis of this model against the Miner model and two other models across various material fatigue datasets shows superior predictive accuracy. Specifically, the new model demonstrates a 74.43% improvement over the Aeran model under six-level loading conditions. Its straightforward mathematical formulation makes it practical for engineering applications in fatigue life prediction.
中文翻译:
基于载荷相互作用和强度退化的新型非线性疲劳累积损伤模型
提出了一种新的非线性疲劳累积损伤模型,以解决非线性累积损伤模型未能考虑强度退化效应和多级载荷之间的相互作用而导致的计算精度不足的挑战。该模型是 Aeran 疲劳损伤模型的增强版,它结合了应力比来捕获载荷相互作用,并包括一个扩展到多级应力状态的对数残余强度退化模型。该模型与 Miner 模型和其他两个模型在各种材料疲劳数据集中的比较分析表明,预测准确性很高。具体来说,新模型在六级载荷条件下比 Aeran 模型提高了 74.43%。其简单的数学公式使其可用于疲劳寿命预测的工程应用。
更新日期:2024-11-15
中文翻译:
基于载荷相互作用和强度退化的新型非线性疲劳累积损伤模型
提出了一种新的非线性疲劳累积损伤模型,以解决非线性累积损伤模型未能考虑强度退化效应和多级载荷之间的相互作用而导致的计算精度不足的挑战。该模型是 Aeran 疲劳损伤模型的增强版,它结合了应力比来捕获载荷相互作用,并包括一个扩展到多级应力状态的对数残余强度退化模型。该模型与 Miner 模型和其他两个模型在各种材料疲劳数据集中的比较分析表明,预测准确性很高。具体来说,新模型在六级载荷条件下比 Aeran 模型提高了 74.43%。其简单的数学公式使其可用于疲劳寿命预测的工程应用。