当前位置:
X-MOL 学术
›
Int. J. Fatigue
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes
International Journal of Fatigue ( IF 5.7 ) Pub Date : 2024-11-13 , DOI: 10.1016/j.ijfatigue.2024.108707 Zheng-Yu Mao, De-Guang Shang, Dao-Hang Li, Na-Min Xiao, Ai-Xue Sha, Jing-Xuan Li, Cheng Qian, Quan Zhou, Wen-Long Li
International Journal of Fatigue ( IF 5.7 ) Pub Date : 2024-11-13 , DOI: 10.1016/j.ijfatigue.2024.108707 Zheng-Yu Mao, De-Guang Shang, Dao-Hang Li, Na-Min Xiao, Ai-Xue Sha, Jing-Xuan Li, Cheng Qian, Quan Zhou, Wen-Long Li
The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.
中文翻译:
不同单轴/多轴热机械加载模式下Ti60的损伤机理
钛合金Ti60在不同单轴/多轴热机械加载模式下的疲劳实验发现,高温和拉应力的共同作用会导致晶界间第二相强化颗粒脱粘,降低Ti60抵抗变形的能力,从而导致材料的疲劳寿命缩短。此外,平均拉伸应力增加了裂纹突破晶间屏障的能力,而多轴载荷引起的非比例附加硬化加剧了微裂纹的形成。两者都会增加材料的疲劳损伤。本研究确定的疲劳损伤机理可以合理解释高温下多轴载荷、单轴和多轴热机械疲劳载荷下的疲劳寿命规律。
更新日期:2024-11-13
中文翻译:
不同单轴/多轴热机械加载模式下Ti60的损伤机理
钛合金Ti60在不同单轴/多轴热机械加载模式下的疲劳实验发现,高温和拉应力的共同作用会导致晶界间第二相强化颗粒脱粘,降低Ti60抵抗变形的能力,从而导致材料的疲劳寿命缩短。此外,平均拉伸应力增加了裂纹突破晶间屏障的能力,而多轴载荷引起的非比例附加硬化加剧了微裂纹的形成。两者都会增加材料的疲劳损伤。本研究确定的疲劳损伤机理可以合理解释高温下多轴载荷、单轴和多轴热机械疲劳载荷下的疲劳寿命规律。