当前位置:
X-MOL 学术
›
Eur. J. Oper. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Time-consistent asset allocation for risk measures in a Lévy market
European Journal of Operational Research ( IF 6.0 ) Pub Date : 2024-10-05 , DOI: 10.1016/j.ejor.2024.09.049 Felix Fießinger, Mitja Stadje
European Journal of Operational Research ( IF 6.0 ) Pub Date : 2024-10-05 , DOI: 10.1016/j.ejor.2024.09.049 Felix Fießinger, Mitja Stadje
Focusing on gains & losses relative to a risk-free benchmark instead of terminal wealth, we consider an asset allocation problem to maximize time-consistently a mean-risk reward function with a general risk measure which is (i) law-invariant, (ii) cash- or shift-invariant, and (iii) positively homogeneous, and possibly plugged into a general function. Examples include (relative) Value at Risk, coherent risk measures, variance, and generalized deviation risk measures. We model the market via a generalized version of the multi-dimensional Black–Scholes model using α -stable Lévy processes and give supplementary results for the classical Black–Scholes model. The optimal solution to this problem is a Nash subgame equilibrium given by the solution of an extended Hamilton–Jacobi–Bellman equation. Moreover, we show that the optimal solution is deterministic under appropriate assumptions.
中文翻译:
Lévy 市场中风险指标的时间一致资产配置
我们关注相对于无风险基准的收益和损失,而不是终端财富,我们认为一个资产配置问题,以最大化时间一致地是一个平均风险回报函数,其通用风险度量是(i)定律不变,(ii)现金或转移不变,以及(iii)正同质,并可能插入到通用函数中。示例包括 (相对) 风险值、连贯风险度量、方差和广义偏差风险度量。我们使用α稳定的 Lévy 过程通过多维 Black-Scholes 模型的广义版本对市场进行建模,并给出了经典 Black-Scholes 模型的补充结果。此问题的最佳解是由扩展的 Hamilton-Jacobi-Bellman 方程的解给出的 Nash 子博弈均衡。此外,我们表明,在适当的假设下,最优解是确定性的。
更新日期:2024-10-05
中文翻译:
Lévy 市场中风险指标的时间一致资产配置
我们关注相对于无风险基准的收益和损失,而不是终端财富,我们认为一个资产配置问题,以最大化时间一致地是一个平均风险回报函数,其通用风险度量是(i)定律不变,(ii)现金或转移不变,以及(iii)正同质,并可能插入到通用函数中。示例包括 (相对) 风险值、连贯风险度量、方差和广义偏差风险度量。我们使用α稳定的 Lévy 过程通过多维 Black-Scholes 模型的广义版本对市场进行建模,并给出了经典 Black-Scholes 模型的补充结果。此问题的最佳解是由扩展的 Hamilton-Jacobi-Bellman 方程的解给出的 Nash 子博弈均衡。此外,我们表明,在适当的假设下,最优解是确定性的。