当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating Intelligent Hydro-informatics into an effective Early Warning System for risk-informed urban flood management
Environmental Modelling & Software ( IF 4.8 ) Pub Date : 2024-10-10 , DOI: 10.1016/j.envsoft.2024.106246
Thanh Quang Dang, Ba Hoang Tran, Quyen Ngoc Le, Ahad Hasan Tanim, Van Hieu Bui, Son T. Mai, Phong Nguyen Thanh, Duong Tran Anh

The urban drainage system constantly facing flooding issues in coastal and urban areas. Robust and accurate urban flood management, particularly considering fast-moving compound floods, is crucial to minimize the impact of flood disasters in coastal cities. Till now, Ho Chi Minh City (HCMC) lacks an effective means of urban flood management because of flood risk communication among residents. Existing flood risk communication tools rely on post-disaster flood model outcomes and data. Therefore, this research proposes a real-time Early Urban Flooding Warning System (EUFWS) integrated with a user-friendly web and app interface. The backbone of this system consists of flood models developed using machine learning (ML) algorithms, combined with big data and Web-GIS visualization, with ML serving as the core for constructing the EUFWS. EUFWS offer several key advantages: they are available at all times, accessible from anywhere, and provide a real-time, multi-user working platform. Additionally, the system is flexible, allowing for the easy addition of components and services and scalable, adjusting to workload demands. EUFWS have been successfully deployed in Thu Duc City, Vietnam, as a case study and are operating effectively. EUFWS have been successfully deployed in Thu Duc City, Vietnam, as a case study and are operating effectively. Research results indicate that EUFWS supported decision-makers to be effectively risk informed and make intelligent decisions during urban flood emergencies. This underscores the significant potential of integrating ML and information technology to enhance the management of smart urban drainage systems in flood-prone cities worldwide.

中文翻译:


将智能水文信息学集成到有效的早期预警系统中,以实现风险知情的城市洪水管理



城市排水系统在沿海和城市地区不断面临洪水问题。稳健而准确的城市洪水管理,特别是考虑到快速移动的复合洪水,对于最大限度地减少沿海城市洪水灾害的影响至关重要。到目前为止,胡志明市 (HCMC) 由于居民之间缺乏洪水风险沟通,缺乏有效的城市洪水管理手段。现有的洪水风险沟通工具依赖于灾后洪水模型的结果和数据。因此,本研究提出了一种实时早期城市洪水预警系统 (EUFWS),该系统与用户友好的 Web 和应用程序界面集成。该系统的主干由使用机器学习 (ML) 算法开发的洪水模型组成,并结合大数据和 Web-GIS 可视化,其中 ML 是构建 EUFWS 的核心。EUFWS 提供了几个关键优势:它们随时可用,可从任何地方访问,并提供实时的多用户工作平台。此外,该系统非常灵活,允许轻松添加组件和服务,并且可以扩展,以适应工作负载需求。EUFWS 已作为案例研究在越南守德市成功部署,并正在有效运行。EUFWS 已作为案例研究在越南守德市成功部署,并正在有效运行。研究结果表明,EUFWS 支持决策者在城市洪水紧急情况下有效地了解风险并做出明智的决策。这凸显了整合 ML 和信息技术以加强全球洪水多发城市智能城市排水系统管理的巨大潜力。
更新日期:2024-10-10
down
wechat
bug