当前位置:
X-MOL 学术
›
J. Build. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamic wireless sensor network-based structural health monitoring system for retractable roof structure
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.jobe.2024.111302 Wucheng Xu, Xiaoqing Zheng, Yanbin Shen, Yaozhi Luo
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.jobe.2024.111302 Wucheng Xu, Xiaoqing Zheng, Yanbin Shen, Yaozhi Luo
Retractable roof structure (RRS) works optimally under varying weather, but is prone to damage due to its complexity, requiring monitoring. Given RRS's large scale, wireless sensor networks (WSNs) are preferred, with dynamic WSNs better adapted to its motion than static ones. A tree-type network topology was designed for dynamic WSN, enabling fast self-routing. It is divided into subnets, each with a relay node as the parent and subordinate relay and sensor nodes as children. Network address reassignment method was proposed to sustain WSN communication during motion. This method involves operations of subnet affiliation change and relay node replacement, the former adjusts the hierarchy between relay nodes across different subnets while preserving parent-child relation within each subnet, and the latter swaps the roles of relay and sensor nodes within one subnet to form a new subnet. Basic communication module with processing, communication, and power management units was used to connect nodes. Dynamic WSN-based structural health monitoring (SHM) system with 372 sensors was developed for the Textile City Sports Center Gymnasium. Mean errors between simulated and measured results were 10.4 % for displacement, 13.6 % for stress during construction, and 13.3 % for tension during service, indicating good agreement. This suggests that the SHM system operated well in both phases. Maximal stress and displacement after unloading were 215.9 MPa and 549 mm, below allowable limits. Monitoring results revealed temperature field non-uniformity with a 9 °C maximal difference, and strong temperature-stress correlation, with Pearson coefficients of 0.971, 0.973, and 0.955 for tie rod, chord, and web. RRS movement significantly impacted midspan tie rods in long main trusses, with a mean tension change exceeding 1000 kN. The research methods and conclusions offer valuable references for developing and applying RRS's SHM system.
中文翻译:
基于动态无线传感器网络的可伸缩屋面结构健康监测系统
可伸缩屋顶结构 (RRS) 在变化的天气下效果最佳,但由于其复杂性而容易损坏,需要监控。鉴于 RRS 的大规模,无线传感器网络 (WSN) 是首选,动态 WSN 比静态 WSN 更适应其运动。为动态 WSN 设计了树型网络拓扑,可实现快速自路由。它分为多个子网,每个子网都有一个中继节点作为父级,从属中继节点和传感器节点作为子级。提出了网络地址重新分配方法,以在运动期间维持 WSN 通信。此方法涉及子网隶属关系更改和中继节点替换操作,前者在保留每个子网内的父子关系的同时调整不同子网中中继节点之间的层次结构,后者在一个子网内交换中继节点和传感器节点的角色以形成新的子网。使用带有处理、通信和电源管理单元的基本通信模块来连接节点。为轻纺城体育中心体育馆开发了基于 WSN 的动态结构健康监测 (SHM) 系统,该系统具有 372 个传感器。模拟结果和测量结果之间的平均误差为位移 10.4 %,施工期间应力 13.6 %,使用期间张力 13.3 %,表明一致性良好。这表明 SHM 系统在两个阶段都运行良好。卸载后的最大应力和位移分别为 215.9 MPa 和 549 mm,低于允许限值。监测结果显示,温度场不均匀性,最大差异为 9 °C,温度-应力相关性强,拉杆、弦杆和腹板的皮尔逊系数分别为 0.971、0.973 和 0.955。 RRS 运动显着影响长主桁架中的中跨拉杆,平均张力变化超过 1000 kN。研究方法和结论为开发和应用 RRS 的 SHM 系统提供了有价值的参考。
更新日期:2024-11-12
中文翻译:
基于动态无线传感器网络的可伸缩屋面结构健康监测系统
可伸缩屋顶结构 (RRS) 在变化的天气下效果最佳,但由于其复杂性而容易损坏,需要监控。鉴于 RRS 的大规模,无线传感器网络 (WSN) 是首选,动态 WSN 比静态 WSN 更适应其运动。为动态 WSN 设计了树型网络拓扑,可实现快速自路由。它分为多个子网,每个子网都有一个中继节点作为父级,从属中继节点和传感器节点作为子级。提出了网络地址重新分配方法,以在运动期间维持 WSN 通信。此方法涉及子网隶属关系更改和中继节点替换操作,前者在保留每个子网内的父子关系的同时调整不同子网中中继节点之间的层次结构,后者在一个子网内交换中继节点和传感器节点的角色以形成新的子网。使用带有处理、通信和电源管理单元的基本通信模块来连接节点。为轻纺城体育中心体育馆开发了基于 WSN 的动态结构健康监测 (SHM) 系统,该系统具有 372 个传感器。模拟结果和测量结果之间的平均误差为位移 10.4 %,施工期间应力 13.6 %,使用期间张力 13.3 %,表明一致性良好。这表明 SHM 系统在两个阶段都运行良好。卸载后的最大应力和位移分别为 215.9 MPa 和 549 mm,低于允许限值。监测结果显示,温度场不均匀性,最大差异为 9 °C,温度-应力相关性强,拉杆、弦杆和腹板的皮尔逊系数分别为 0.971、0.973 和 0.955。 RRS 运动显着影响长主桁架中的中跨拉杆,平均张力变化超过 1000 kN。研究方法和结论为开发和应用 RRS 的 SHM 系统提供了有价值的参考。