当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An online interactive physics-informed adversarial network for solving mean field games
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2024-10-25 , DOI: 10.1016/j.enganabound.2024.106002
Weishi Yin, Zhengxuan Shen, Pinchao Meng, Hongyu Liu

We propose an online interactive physics-informed adversarial network (IPIAN) to address mean field games (MFGs) from the perspective of physics-informed interaction. In this study, we model the interaction between agents as a physics-informed exchange process, quantifying the evolution and distribution of individual strategy choices. We utilize the variational dyadic structure of MFGs to transform the dynamic game problem into a static optimization problem, subsequently employing the adversarial network to solve the mean field games. Based on the generative adversarial framework, two online physics-informed networks solve the value and density functions. These networks are trained to approximate the solution of MFGs through adversarial means. Additionally, a self-attention mechanism is introduced to enhance the focus on strategic physics-informed, thereby improving the expressiveness of IPIAN. Numerical experiments validate the effectiveness of IPIAN in solving high-dimensional mean field game models, as demonstrated by obstacle avoidance experiments with a quadrotor in various scenarios.

中文翻译:


用于解决平均场博弈的在线交互式物理信息对抗网络



我们提出了一种在线交互式物理信息对抗网络 (IPIAN),从物理信息交互的角度解决平均场博弈 (MFG)。在这项研究中,我们将代理之间的交互建模为一个基于物理学的交换过程,量化了个人策略选择的演变和分布。我们利用 MFGs 的变分二元结构将动态博弈问题转化为静态优化问题,随后采用对抗网络来解决平均场博弈。基于生成对抗框架,两个在线物理信息网络求解值和密度函数。这些网络经过训练,可以通过对抗性手段近似 MFG 的解。此外,引入了一种自我注意机制,以增强对战略物理信息的关注,从而提高 IPIAN 的表达能力。数值实验验证了 IPIAN 在求解高维平均场博弈模型方面的有效性,正如在各种场景中使用四旋翼飞行器进行的避障实验所证明的那样。
更新日期:2024-10-25
down
wechat
bug