当前位置:
X-MOL 学术
›
Int. J. Rock Mech. Min. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A fault activation-shearing-sliding peridynamic model exploring the role of static and kinetic frictional contacts
International Journal of Rock Mechanics and Mining Sciences ( IF 7.0 ) Pub Date : 2024-10-28 , DOI: 10.1016/j.ijrmms.2024.105946 Zhen Yang, HanYi Wang, Mukul Sharma, Erdogan Madenci
International Journal of Rock Mechanics and Mining Sciences ( IF 7.0 ) Pub Date : 2024-10-28 , DOI: 10.1016/j.ijrmms.2024.105946 Zhen Yang, HanYi Wang, Mukul Sharma, Erdogan Madenci
Understanding fault dynamics is essential for comprehending the underlying mechanisms of seismic events. This study introduces a novel fault activation-shearing-sliding model within a peridynamic (PD) framework, characterized by distinctly defined static and kinetic frictional behaviors. Static friction bonds are developed to sustain normal forces perpendicular to the fault plane and to manage tangential frictional forces along the fault's geometry. The failure of these bonds is directly linked to fault activation, while the ensuing sliding phase is governed by a short-range kinetic friction model. Additionally, an adaptive identification method is proposed to accurately determine local unit normal vectors on arbitrarily shaped contact surfaces. The effectiveness and applicability of the model are validated through fault activation and plate sliding friction tests. The model is further utilized to investigate the effects of local geometry, roughness, and friction coefficients on fault behavior, with comparisons to experimental results. Observations indicate that the dominant factors influencing fault shear resistance vary across stages, primarily involving static friction during activation, compaction deformation during shearing, and kinetic friction during sliding. When shear resistance is primarily governed by friction, it exhibits heightened sensitivity to various shear forces, including those from indirect loading disturbances.
中文翻译:
探究静力和动能摩擦接触作用的断层激活-剪切-滑动近场动力学模型
了解断层动力学对于理解地震事件的潜在机制至关重要。本研究在近场动力学 (PD) 框架内引入了一种新的断层激活-剪切-滑动模型,其特征是明确定义的静态和动力学摩擦行为。静摩擦键的开发是为了维持垂直于断层平面的法向力,并管理沿断层几何形状的切向摩擦力。这些键的失效与故障激活直接相关,而随后的滑动阶段则由短程动摩擦模型控制。此外,提出了一种自适应识别方法来准确确定任意形状接触面上的局部单位法向量。通过故障激活和板滑动摩擦试验验证了模型的有效性和适用性。该模型进一步用于研究局部几何形状、粗糙度和摩擦系数对断层行为的影响,并与实验结果进行比较。观测表明,影响断层抗剪能力的主导因素因阶段而异,主要涉及激活过程中的静摩擦、剪切过程中的压实变形和滑动过程中的动摩擦。当剪切阻力主要由摩擦力控制时,它对各种剪切力表现出更高的敏感性,包括来自间接载荷干扰的剪切力。
更新日期:2024-10-28
中文翻译:
探究静力和动能摩擦接触作用的断层激活-剪切-滑动近场动力学模型
了解断层动力学对于理解地震事件的潜在机制至关重要。本研究在近场动力学 (PD) 框架内引入了一种新的断层激活-剪切-滑动模型,其特征是明确定义的静态和动力学摩擦行为。静摩擦键的开发是为了维持垂直于断层平面的法向力,并管理沿断层几何形状的切向摩擦力。这些键的失效与故障激活直接相关,而随后的滑动阶段则由短程动摩擦模型控制。此外,提出了一种自适应识别方法来准确确定任意形状接触面上的局部单位法向量。通过故障激活和板滑动摩擦试验验证了模型的有效性和适用性。该模型进一步用于研究局部几何形状、粗糙度和摩擦系数对断层行为的影响,并与实验结果进行比较。观测表明,影响断层抗剪能力的主导因素因阶段而异,主要涉及激活过程中的静摩擦、剪切过程中的压实变形和滑动过程中的动摩擦。当剪切阻力主要由摩擦力控制时,它对各种剪切力表现出更高的敏感性,包括来自间接载荷干扰的剪切力。