当前位置: X-MOL 学术International Review of Financial Analysis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ESG-washing detection in corporate sustainability reports
International Review of Financial Analysis ( IF 7.5 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.irfa.2024.103742
Valentina Lagasio

This study introduces the ESG-washing Severity Index (ESGSI) for quantitatively assessing discrepancies between portrayed and actual sustainability practices in corporate disclosures. Using advanced Natural Language Processing (NLP) techniques, we analyze sustainability reports from 749 listed companies, integrating sentiment analysis with the frequency of sustainability terms to calculate the ESGSI. Our findings reveal significant variation in ESG-washing practices across industries and geographical regions. The ESGSI serves as a critical tool for stakeholders and policymakers, highlighting the need for stricter sustainability reporting standards and more effective regulatory frameworks to combat ESG-washing. This study contributes to the growing body of literature on corporate sustainability and provides practical implications for investors, corporate managers, and policymakers in evaluating and improving ESG practices and disclosures.

中文翻译:


企业可持续发展报告中的 ESG 清洗检测



本研究引入了 ESG 清洗严重性指数 (ESGSI),用于定量评估企业披露中描绘的和实际的可持续发展实践之间的差异。使用先进的自然语言处理 (NLP) 技术,我们分析了 749 家上市公司的可持续发展报告,将情感分析与可持续发展术语的频率相结合,以计算 ESGSI。我们的研究结果显示,不同行业和地理区域的 ESG 清洗实践存在显著差异。ESGSI 是利益相关者和政策制定者的重要工具,强调需要更严格的可持续发展报告标准和更有效的监管框架来打击 ESG 清洗。这项研究为越来越多的企业可持续发展文献做出了贡献,并为投资者、企业管理者和政策制定者在评估和改进 ESG 实践和披露方面提供了实际意义。
更新日期:2024-11-08
down
wechat
bug