当前位置:
X-MOL 学术
›
Aerosp. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigation of the aerodynamic performance of the dragonfly-inspired tandem wings considering the coupling between the stroke plane and phase difference
Aerospace Science and Technology ( IF 5.0 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.ast.2024.109717 Xiaojun Yang, Yang Luo, Xinyu Lang, Wei Wang
Aerospace Science and Technology ( IF 5.0 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.ast.2024.109717 Xiaojun Yang, Yang Luo, Xinyu Lang, Wei Wang
The dragonfly's tandem wings can make full use of the interference of various spatial vortices to obtain efficient flight capability. The complex coupling among multiple motion parameters will have an important influence on the interference between the forewing (FW) and hindwing (HW). In this paper, the aerodynamic performance of the dragonfly-inspired tandem wings is analyzed using the Computational Fluid Dynamics (CFD) method considering the coupling effect of the stroke plane and phase difference. The variation of the force coefficient, vortex structure and aerodynamic efficiency of the tandem wings in forward flight are analyzed, respectively. The results show that the stroke plane angle affects the distribution of the leading edge vortex (LEV) and trailing edge vortex (TEV), which primarily controls the trend of horizontal force variation. The phase difference of tandem wings will change the fluctuation of the horizontal force coefficient curve by affecting the meeting time of the forewing and hindwing. However, with the increase of stroke plane angle, the fluctuation of aerodynamic coefficient caused by phase difference will decrease. The propulsion efficiency(η ) and power loading(PL ) can be improved through increasing the stroke plane angle and selecting a reasonable phase difference. The conclusion can provide theoretical guidance for the design of the dragonfly-inspired tandem flapping wing aircraft (DTFWA) and the choice of motion parameters.
中文翻译:
考虑行程平面和相位差耦合的蜻蜓式串联机翼空气动力学性能研究
蜻蜓的串联翅膀可以充分利用各种空间漩涡的干扰,获得高效的飞行能力。多个运动参数之间的复杂耦合将对前翅 (FW) 和后翅 (HW) 之间的干涉产生重要影响。本文采用计算流体动力学 (CFD) 方法分析了以蜻蜓为灵感的串联机翼的空气动力学性能,考虑了行程平面和相位差的耦合效应。分别分析了串联机翼在前向飞行中力系数、涡流结构和空气动力学效率的变化。结果表明:行程平面角度影响前缘涡旋 (LEV) 和后缘涡旋 (TEV) 的分布,主要控制水平力变化的趋势。串联翼的相位差会通过影响前翅和后翼的相遇时间来改变水平力系数曲线的波动。但随着行程平面角度的增大,相位差引起的气动系数波动会减小。通过增加行程平面角度和选择合理的相位差,可以提高推进效率(η)和功率负载(PL)。该结论可为受蜻蜓启发的串联扑翼飞机 (DTFWA) 的设计和运动参数的选择提供理论指导。
更新日期:2024-11-06
中文翻译:
考虑行程平面和相位差耦合的蜻蜓式串联机翼空气动力学性能研究
蜻蜓的串联翅膀可以充分利用各种空间漩涡的干扰,获得高效的飞行能力。多个运动参数之间的复杂耦合将对前翅 (FW) 和后翅 (HW) 之间的干涉产生重要影响。本文采用计算流体动力学 (CFD) 方法分析了以蜻蜓为灵感的串联机翼的空气动力学性能,考虑了行程平面和相位差的耦合效应。分别分析了串联机翼在前向飞行中力系数、涡流结构和空气动力学效率的变化。结果表明:行程平面角度影响前缘涡旋 (LEV) 和后缘涡旋 (TEV) 的分布,主要控制水平力变化的趋势。串联翼的相位差会通过影响前翅和后翼的相遇时间来改变水平力系数曲线的波动。但随着行程平面角度的增大,相位差引起的气动系数波动会减小。通过增加行程平面角度和选择合理的相位差,可以提高推进效率(η)和功率负载(PL)。该结论可为受蜻蜓启发的串联扑翼飞机 (DTFWA) 的设计和运动参数的选择提供理论指导。