当前位置: X-MOL 学术Int. J. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear resonance of fractional order viscoelastic PET films under temperature loading
International Journal of Engineering Science ( IF 5.7 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.ijengsci.2024.104153
Qiumin Wu, Chaoyue Lin, Jimei Wu, Mingyue Shao, Jiao Wu, Dingqiang Liu, Jiajuan Qing

The effects of oven temperature during printing on nonlinear vibration for fractional-order PET films are considered in this paper. The effect of temperature, fractional order modelling and some other parameters are analysed with respect to the response of the resonance. Fractional order kelvin-Voigt ontological relationship is used to describe the characteristics of viscoelastic materials. The differential equations for nonlinear vibrations are inferred according to the second law of Newton and the theory of von Karman. Discretization for nonlinear equations on locomotion using the Bubnov–Galerkin method. Forced co-oscillatory amplitude-frequency response equations for thin-films systems under temperature loading were calculated using the multiple scales method. Results of numeral results show that temperature, and fractional-order visco-elastic modelling influence the membrane's response to resonance. These results provide a basis for studying fractional-order visco-elastic films vibrations and identifying regions of stable operation in moving systems to prevent divergent instabilities for flexible electronic device manufacturing.

中文翻译:


温度负载下分数阶粘弹性 PET 薄膜的非线性共振



本文考虑了印刷过程中烘箱温度对分数阶 PET 薄膜非线性振动的影响。分析了温度、分数阶建模和其他一些参数对谐振响应的影响。分数阶 Kelvin-Voigt 本体论关系用于描述粘弹性材料的特性。非线性振动的微分方程是根据牛顿第二定律和冯·卡门理论推断的。使用 Bubnov-Galerkin 方法对运动非线性方程进行离散化。使用多尺度方法计算温度负载下薄膜系统的强制共振幅频响应方程。数值结果表明,温度和分数阶粘弹性建模会影响膜对共振的响应。这些结果为研究分数阶粘弹性薄膜振动和确定运动系统中稳定运行的区域提供了基础,以防止柔性电子器件制造的发散性不稳定性。
更新日期:2024-10-18
down
wechat
bug