当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Balancing the Charge Separation and Surface Reaction Dynamics in Twin‐Interface Photocatalysts for Solar‐to‐Hydrogen Production
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-19 , DOI: 10.1002/adma.202415138 Meng Dan, Shan Yu, Weihua Lin, Mohamed Abdellah, Zhen Guo, Zhao‐Qing Liu, Tõnu Pullerits, Kaibo Zheng, Ying Zhou
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-19 , DOI: 10.1002/adma.202415138 Meng Dan, Shan Yu, Weihua Lin, Mohamed Abdellah, Zhen Guo, Zhao‐Qing Liu, Tõnu Pullerits, Kaibo Zheng, Ying Zhou
Solar‐driven photocatalytic green hydrogen (H2 ) evolution reaction presents a promising route toward solar‐to‐chemical fuel conversion. However, its efficiency has been hindered by the desynchronization of fast photogenerated charge carriers and slow surface reaction kinetics. This work introduces a paradigm shift in photocatalyst design by focusing on the synchronization of charge transport and surface reactions through the use of twin structures as a unique platform. With CdS twin structure (CdS‐T) as a model, the role of twin boundaries in modulating surface reactions and facilitating charge migration is systematically investigated. Utilizing transient absorption (TA) and time‐resolved infrared (TRIR) spectroscopies, it is revealed that CdS‐T achieves charge separation on a picosecond timescale and, importantly, the surface reaction at the twin boundary with the involvement of holes also occurs within 100 ps to 3 ns. This synchronization of charge donation and surface regeneration significantly enhances the hydrogen evolution process. Accordingly, CdS‐T exhibits superior activity for visible light photocatalytic H2 production, withthe H2 production rate of 55.61 mmol h−1 g−1 and remarkable stability (>30 h), outperforming pristine CdS significantly. This study underscores the transformative potential of twin structures in photocatalysis, offering a new avenue to synchronize charge transport and surface reactions.
中文翻译:
平衡用于太阳能制氢的双界面光催化剂中的电荷分离和表面反应动力学
太阳能驱动的光催化绿氢 (H2) 析出反应为太阳能到化学燃料的转化提供了一条有前途的途径。然而,其效率受到快速光生载流子的不同步和缓慢的表面反应动力学的阻碍。这项工作通过使用孪生结构作为独特的平台,专注于电荷传输和表面反应的同步,从而引入了光催化剂设计的范式转变。以 CdS 孪生结构 (CdS-T) 为模型,系统研究了孪晶界在调节表面反应和促进电荷迁移中的作用。利用瞬态吸收 (TA) 和时间分辨红外 (TRIR) 光谱,发现 CdS-T 在皮秒时间尺度上实现了电荷分离,重要的是,双晶界处的表面反应与空穴的参与也发生在 100 ps 至 3 ns 内。电荷捐赠和表面再生的这种同步显着增强了析氢过程。因此,CdS-T 在可见光光催化 H2 生产方面表现出优异的活性,H2 产生速率为 55.61 mmol h-1 g-1 和显著的稳定性 (>30 h),明显优于原始 CdS。这项研究强调了孪生结构在光催化中的变革潜力,为同步电荷传输和表面反应提供了一条新途径。
更新日期:2024-11-19
中文翻译:
平衡用于太阳能制氢的双界面光催化剂中的电荷分离和表面反应动力学
太阳能驱动的光催化绿氢 (H2) 析出反应为太阳能到化学燃料的转化提供了一条有前途的途径。然而,其效率受到快速光生载流子的不同步和缓慢的表面反应动力学的阻碍。这项工作通过使用孪生结构作为独特的平台,专注于电荷传输和表面反应的同步,从而引入了光催化剂设计的范式转变。以 CdS 孪生结构 (CdS-T) 为模型,系统研究了孪晶界在调节表面反应和促进电荷迁移中的作用。利用瞬态吸收 (TA) 和时间分辨红外 (TRIR) 光谱,发现 CdS-T 在皮秒时间尺度上实现了电荷分离,重要的是,双晶界处的表面反应与空穴的参与也发生在 100 ps 至 3 ns 内。电荷捐赠和表面再生的这种同步显着增强了析氢过程。因此,CdS-T 在可见光光催化 H2 生产方面表现出优异的活性,H2 产生速率为 55.61 mmol h-1 g-1 和显著的稳定性 (>30 h),明显优于原始 CdS。这项研究强调了孪生结构在光催化中的变革潜力,为同步电荷传输和表面反应提供了一条新途径。