Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revealing the Effect of Curvature Structure in Hard Carbon Anodes for Lithium/Sodium Ion Batteries
Small ( IF 13.0 ) Pub Date : 2024-11-19 , DOI: 10.1002/smll.202409120 Xin Feng, Feng Wu, Yanke Fu, Ying Li, Yuteng Gong, Xiaoyue Ma, Ping Zhang, Chuan Wu, Ying Bai
Small ( IF 13.0 ) Pub Date : 2024-11-19 , DOI: 10.1002/smll.202409120 Xin Feng, Feng Wu, Yanke Fu, Ying Li, Yuteng Gong, Xiaoyue Ma, Ping Zhang, Chuan Wu, Ying Bai
Heteroatom doping is the most common means to enhance the Li+ /Na+ ions storage of hard carbon (HC). The explanation of the storage mechanism of heteroatom‐doped HC is to increase the active site or widen the layer spacing while ignoring the effect of local bending structure induced by it. Meanwhile, the storage mechanism by the localized bending structure also lacks in‐depth study. Herein, a locally curved configuration and an amorphous structure are designed by introducing different heteroatoms, respectively, and the mechanism of the two types of structures on the Li+ /Na+ ions storage is explored. The density functional theory (DFT) calculation shows that the adsorption energy of Li+ /Na+ ions is optimal at the appropriate curvature of 27.72 m−1 . Serving as anode for lithium/sodium ion batteries in ester electrolytes, the optimized HCs demonstrate satisfied specific capacity and high‐rate capability, respectively. Furthermore, the charging capacity below 1.0 V of HC with suitable curvature microstructure reaches 84.8% and 90.1% of the total charge capacity, confirming that the curvature defects can better control the delithiation/desodiation process, and provide a higher energy density. This study enlightens new insights into the storage mechanisms of Li+ /Na+ ions and provides guidance for better design of heteroatom‐doped carbon anodes with superior performance.
中文翻译:
揭示锂/钠离子电池硬碳负极曲率结构的影响
杂原子掺杂是增强硬碳 (HC) 中 Li+/Na+ 离子存储的最常用方法。对杂原子掺杂 HC 的存储机制的解释是增加活性位点或扩大层间距,同时忽略其诱导的局部弯曲结构的影响。同时,局域弯曲结构的存储机制也缺乏深入研究。本文通过分别引入不同的杂原子设计了局部弯曲构型和非晶结构,并探讨了这两种结构对 Li+/Na+ 离子存储的机制。密度泛函理论 (DFT) 计算表明,Li+/Na+ 离子的吸附能在 27.72 m-1 的适当曲率下是最优的。作为酯电解质中锂/钠离子电池的负极,优化的 HCs 分别表现出令人满意的比容量和高倍率能力。此外,具有合适曲率微观结构的 HC 低于 1.0 V 的充电容量达到总充电容量的 84.8% 和 90.1%,证实了曲率缺陷可以更好地控制脱锂/脱盐过程,并提供更高的能量密度。本研究为了解 Li+/Na+ 离子的存储机制提供了新的见解,并为更好地设计具有卓越性能的杂原子掺杂碳负极提供了指导。
更新日期:2024-11-19
中文翻译:
揭示锂/钠离子电池硬碳负极曲率结构的影响
杂原子掺杂是增强硬碳 (HC) 中 Li+/Na+ 离子存储的最常用方法。对杂原子掺杂 HC 的存储机制的解释是增加活性位点或扩大层间距,同时忽略其诱导的局部弯曲结构的影响。同时,局域弯曲结构的存储机制也缺乏深入研究。本文通过分别引入不同的杂原子设计了局部弯曲构型和非晶结构,并探讨了这两种结构对 Li+/Na+ 离子存储的机制。密度泛函理论 (DFT) 计算表明,Li+/Na+ 离子的吸附能在 27.72 m-1 的适当曲率下是最优的。作为酯电解质中锂/钠离子电池的负极,优化的 HCs 分别表现出令人满意的比容量和高倍率能力。此外,具有合适曲率微观结构的 HC 低于 1.0 V 的充电容量达到总充电容量的 84.8% 和 90.1%,证实了曲率缺陷可以更好地控制脱锂/脱盐过程,并提供更高的能量密度。本研究为了解 Li+/Na+ 离子的存储机制提供了新的见解,并为更好地设计具有卓越性能的杂原子掺杂碳负极提供了指导。