当前位置:
X-MOL 学术
›
Land Degrad. Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Machine Learning Models Based on UAV Oblique Images Improved Above‐Ground Biomass Estimation Accuracy Across Diverse Grasslands on the Qinghai–Tibetan Plateau
Land Degradation & Development ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1002/ldr.5381 Feida Sun, Dewei Chen, Linhao Li, Qiaoqiao Zhang, Xin Yuan, Zihong Liao, Chunlian Xiang, Lin Liu, Jiqiong Zhou, Mani Shrestha, Dong Xu, Yanfu Bai, A. Allan Degen
Land Degradation & Development ( IF 3.6 ) Pub Date : 2024-11-19 , DOI: 10.1002/ldr.5381 Feida Sun, Dewei Chen, Linhao Li, Qiaoqiao Zhang, Xin Yuan, Zihong Liao, Chunlian Xiang, Lin Liu, Jiqiong Zhou, Mani Shrestha, Dong Xu, Yanfu Bai, A. Allan Degen
Unmanned aerial vehicles (UAVs) are becoming important tools for modern management and scientific research of grassland resources, especially in the dynamic monitoring of above‐ground biomass (AGB). However, current studies rely mostly on vertical images to construct models, with little consideration given to oblique images. Determination of image acquisition height often relies on experience and intuition, but there is limited comparison of models in estimating across different grassland types. To address this gap, this study selected 56 plots on the northern Qinghai–Tibetan Plateau (QTP), comprising 16 alpine meadows (AM), 14 alpine steppes (AS), 13 alpine meadow steppes (AMS), and 13 alpine desert steppes (ADS). We used the DJI Mavic 2 Pro to capture a total of 5040 images at six heights (5, 10, 20, 30, 40, and 50 m) and five angles (30°, 45°, 60°, 90°, and 180° panoramic shots). Based on RGB (red‐green‐blue) images, seven vegetation indices (normalized difference index (NDI), excess red vegetation index (EXR), modified green red vegetation index (MGRVI), visible atmospherically resistant index (VARI), excess green minus excess (EXG), green leaf index (GLI), and red–green–blue vegetation index (RGBVI)) were employed, displaying a trend in vegetation and biomass changes across different heights and angles, peaking at 20 m and 45°. Linear regression models and machine learning models (random forest, extreme gradient boosting, multilayer perceptron neural network, and stochastic gradient descent) were generated, with NDI, VARI, and MGRVI providing the best estimations. Comparative results on estimations of different grassland types indicated that oblique images helped reduce the models' root mean square error (RMSE), particularly in the machine learning models. All models were best in AMS and ADS, with average R 2 of 0.810 and 0.825, with machine learning models (average R 2 = 0.746) stronger than linear regression models (average R 2 = 0.597), indicating specific requirements for model selection across different grasslands. The findings in this study can provide a reference for the adaptive management of different grassland ecosystems on the QTP and worldwide.
中文翻译:
基于无人机倾斜图像的机器学习模型提高了青藏高原不同草原的地上生物量估算精度
无人机 (UAV) 正在成为草原资源现代管理和科学研究的重要工具,尤其是在地上生物量 (AGB) 的动态监测中。然而,目前的研究主要依靠垂直图像来构建模型,很少考虑倾斜图像。图像采集高度的确定通常依赖于经验和直觉,但在估计不同草原类型时,模型之间的比较有限。为了解决这一差距,本研究在青藏高原北部 (QTP) 上选择了 56 个样地,包括 16 个高寒草甸 (AM)、14 个高寒草原 (AS)、13 个高寒草甸草原 (AMS) 和 13 个高寒荒漠草原 (ADS)。我们使用 DJI Mavic 2 Pro 在 6 个高度(5、10、20、30、40 和 50 米)和 5 个角度(30°、45°、60°、90° 和 180° 全景拍摄)共拍摄了 5040 张图像。基于 RGB(红-绿-蓝)图像,采用 7 种植被指数(归一化差值指数 (NDI)、超额红色植被指数 (EXR)、改性绿红植被指数 (MGRVI)、可见光大气阻力指数 (VARI)、超额绿色减去超额 (EXG)、绿叶指数 (GLI) 和红-绿-蓝植被指数 (RGBVI)),展示了不同高度和角度的植被和生物量变化趋势, 峰值在 20 m 和 45° 处。生成了线性回归模型和机器学习模型(随机森林、极端梯度提升、多层感知器神经网络和随机梯度下降),其中 NDI、VARI 和 MGRVI 提供了最佳估计。对不同草地类型估计的比较结果表明,倾斜图像有助于减少模型的均方根误差 (RMSE),尤其是在机器学习模型中。 所有模型在 AMS 和 ADS 中表现最好,平均 R2 分别为 0.810 和 0.825,机器学习模型 (平均 R2 = 0.746) 强于线性回归模型 (平均 R2 = 0.597),表明不同草原的模型选择有特定要求。本研究结果可为 QTP 和全球不同草地生态系统的适应性管理提供参考。
更新日期:2024-11-19
中文翻译:
基于无人机倾斜图像的机器学习模型提高了青藏高原不同草原的地上生物量估算精度
无人机 (UAV) 正在成为草原资源现代管理和科学研究的重要工具,尤其是在地上生物量 (AGB) 的动态监测中。然而,目前的研究主要依靠垂直图像来构建模型,很少考虑倾斜图像。图像采集高度的确定通常依赖于经验和直觉,但在估计不同草原类型时,模型之间的比较有限。为了解决这一差距,本研究在青藏高原北部 (QTP) 上选择了 56 个样地,包括 16 个高寒草甸 (AM)、14 个高寒草原 (AS)、13 个高寒草甸草原 (AMS) 和 13 个高寒荒漠草原 (ADS)。我们使用 DJI Mavic 2 Pro 在 6 个高度(5、10、20、30、40 和 50 米)和 5 个角度(30°、45°、60°、90° 和 180° 全景拍摄)共拍摄了 5040 张图像。基于 RGB(红-绿-蓝)图像,采用 7 种植被指数(归一化差值指数 (NDI)、超额红色植被指数 (EXR)、改性绿红植被指数 (MGRVI)、可见光大气阻力指数 (VARI)、超额绿色减去超额 (EXG)、绿叶指数 (GLI) 和红-绿-蓝植被指数 (RGBVI)),展示了不同高度和角度的植被和生物量变化趋势, 峰值在 20 m 和 45° 处。生成了线性回归模型和机器学习模型(随机森林、极端梯度提升、多层感知器神经网络和随机梯度下降),其中 NDI、VARI 和 MGRVI 提供了最佳估计。对不同草地类型估计的比较结果表明,倾斜图像有助于减少模型的均方根误差 (RMSE),尤其是在机器学习模型中。 所有模型在 AMS 和 ADS 中表现最好,平均 R2 分别为 0.810 和 0.825,机器学习模型 (平均 R2 = 0.746) 强于线性回归模型 (平均 R2 = 0.597),表明不同草原的模型选择有特定要求。本研究结果可为 QTP 和全球不同草地生态系统的适应性管理提供参考。