Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lattice Expanded Titania as an Excellent Anode for an Aqueous Zinc-Ion Battery Enabled by a Highly Reversible H+-Promoted Zn2+ Intercalation
ACS Nano ( IF 15.8 ) Pub Date : 2024-11-18 , DOI: 10.1021/acsnano.4c09999 Chao Geng, Pengfei Zhang, Jin-Ming Wu, Jiayi Qin, Wei Wen
ACS Nano ( IF 15.8 ) Pub Date : 2024-11-18 , DOI: 10.1021/acsnano.4c09999 Chao Geng, Pengfei Zhang, Jin-Ming Wu, Jiayi Qin, Wei Wen
Aqueous Zn-ion batteries have garnered significant attention as promising and safe energy storage systems. Due to the inevitable dendrite and corrosion in metallic Zn anodes, alternative anodes of intercalation-type materials are desirable, but they still suffer from low energy efficiency, unsatisfactory capacity, and insufficient cycle life. Here, we develop a high-performance anode for aqueous Zn-ion batteries via a lattice expansion strategy in combination with a Zn2+/H+ synergistic mechanism. The anatase TiO2 with expanded lattice exhibits an appropriate deintercalation potential of 0.18 V vs Zn/Zn2+ and a high reversible capacity (227 mAh g–1 at 2.04 A g–1) with an outstanding rate capability and excellent cycle stability. The high electrochemical performance is attributed to a decrease in the Zn2+/H+ diffusion barriers, which results from lattice expansion and also a H+-promoted Zn2+ intercalation effect. The anode intercalates Zn2+/H+ via a solid-solution mechanism with a minor volume change, which contributes to the high reversibility and thus high energy efficiency. When paired with different types of cathodes, including NV, I2, and activated carbon, to construct corresponding full cells, high specific energy, high specific power, long cycle life, and extremely high energy efficiency can be achieved. This study provides a prospect for developing high-performance Zn-ion batteries.
中文翻译:
Lattice 将二氧化钛作为水性锌离子电池的优异阳极,通过高度可逆的 H+ 促进 Zn2+ 插层实现
水性锌离子电池作为有前途且安全的储能系统而受到广泛关注。由于金属 Zn 负极不可避免地会出现枝晶和腐蚀,因此需要替代插层型材料的阳极,但它们仍然存在能源效率低、容量不理想和循环寿命不足等问题。在这里,我们通过晶格膨胀策略结合 Zn2+/H+ 协同机制开发了一种用于水性 Zn 离子电池的高性能负极。具有膨胀晶格的锐钛矿 TiO2 表现出 0.18 V vs Zn/Zn2+ 的适当脱嵌电位和高可逆容量(2.04 A g-1 时为 227 mAh g–1),具有出色的倍率能力和出色的循环稳定性。高电化学性能归因于 Zn2+/H+ 扩散势垒的减少,这是由于晶格膨胀以及 H+ 促进的 Zn2+ 插层效应造成的。阳极通过固溶机制嵌入 Zn2+/H+,体积变化很小,这有助于高可逆性,从而实现高能效。当与不同类型的阴极(包括 NV、I2 和活性炭)配对构建相应的全电池时,可以实现高比能量、高比功率、长循环寿命和极高的能源效率。本研究为开发高性能锂离子电池提供了前景。
更新日期:2024-11-19
中文翻译:
Lattice 将二氧化钛作为水性锌离子电池的优异阳极,通过高度可逆的 H+ 促进 Zn2+ 插层实现
水性锌离子电池作为有前途且安全的储能系统而受到广泛关注。由于金属 Zn 负极不可避免地会出现枝晶和腐蚀,因此需要替代插层型材料的阳极,但它们仍然存在能源效率低、容量不理想和循环寿命不足等问题。在这里,我们通过晶格膨胀策略结合 Zn2+/H+ 协同机制开发了一种用于水性 Zn 离子电池的高性能负极。具有膨胀晶格的锐钛矿 TiO2 表现出 0.18 V vs Zn/Zn2+ 的适当脱嵌电位和高可逆容量(2.04 A g-1 时为 227 mAh g–1),具有出色的倍率能力和出色的循环稳定性。高电化学性能归因于 Zn2+/H+ 扩散势垒的减少,这是由于晶格膨胀以及 H+ 促进的 Zn2+ 插层效应造成的。阳极通过固溶机制嵌入 Zn2+/H+,体积变化很小,这有助于高可逆性,从而实现高能效。当与不同类型的阴极(包括 NV、I2 和活性炭)配对构建相应的全电池时,可以实现高比能量、高比功率、长循环寿命和极高的能源效率。本研究为开发高性能锂离子电池提供了前景。