当前位置: X-MOL 学术J. Ind. Inf. Integr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proximal policy optimization with population-based variable neighborhood search algorithm for coordinating photo-etching and acid-etching processes in sustainable storage chip manufacturing
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.jii.2024.100727
Weijian Zhang, Min Kong, Yajing Zhang, Amir M. Fathollahi-Fard

In the complex process of manufacturing storage chips, the photo-etching and acid-etching stages play a crucial role, significantly affecting energy consumption and environmental impact. This paper introduces a novel Bi-Level Programming Model for Storage Chip Manufacturing (BLPM-SCM) aimed at optimizing the coordination between these two stages. The upper-level model focuses on minimizing the time it takes to complete wafer production, while the lower-level model seeks to reduce the number of acid-etching tanks used, thereby balancing production efficiency with resource utilization. To address the inherent complexity of the bi-level model, we present a hybrid meta-heuristic algorithm that combines Proximal Policy Optimization (PPO) with a Population-based Variable Neighborhood Search (PVNS) method. The PPO-PVNS algorithm enhances the intensification phase by adaptively selecting shaking and local search strategies, while PVNS supports the diversification phase, ensuring comprehensive exploration of the search space through iterative updates of the solution population. Extensive numerical experiments demonstrate the algorithm's superior performance and generalization capabilities in optimizing the manufacturing process. It significantly improves the coordination between the photo-etching and acid-etching stages, achieving dual optimization of energy consumption and environmental benefits. Furthermore, this study provides valuable insights and decision-making tools for industry practitioners, offering innovative solutions for scheduling optimization in the semiconductor sector and promoting more sustainable and efficient production practices.

中文翻译:


使用基于群体的可变邻域搜索算法进行近端策略优化,以协调可持续存储芯片制造中的光刻和酸蚀过程



在制造存储芯片的复杂过程中,光刻和酸蚀阶段起着至关重要的作用,对能源消耗和环境影响产生重大影响。本文介绍了一种新的存储芯片制造双级编程模型 (BLPM-SCM),旨在优化这两个阶段之间的协调。上层模型侧重于最大限度地减少完成晶圆生产所需的时间,而下层模型则旨在减少使用的酸蚀槽数量,从而平衡生产效率和资源利用率。为了解决双层模型的固有复杂性,我们提出了一种混合元启发式算法,该算法将近端策略优化 (PPO) 与基于群体的可变邻域搜索 (PVNS) 方法相结合。PPO-PVNS 算法通过自适应选择摇动和局部搜索策略来增强强化阶段,而 PVNS 支持多样化阶段,确保通过解决方案群体的迭代更新来全面探索搜索空间。大量的数值实验证明了该算法在优化制造过程方面的卓越性能和泛化能力。它显著提高了光刻和酸蚀阶段之间的协调性,实现了能耗和环境效益的双重优化。此外,本研究为行业从业者提供了有价值的见解和决策工具,为半导体行业的调度优化提供了创新的解决方案,并促进了更可持续和高效的生产实践。
更新日期:2024-11-05
down
wechat
bug