当前位置:
X-MOL 学术
›
J. Ind. Inf. Integr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Expert opinion aggregation-based decision support for human-robot collaboration digital twin maturity assessment
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2024-10-21 , DOI: 10.1016/j.jii.2024.100710 Xin Liu, Gongfa Li, Feng Xiang, Bo Tao, Guozhang Jiang
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2024-10-21 , DOI: 10.1016/j.jii.2024.100710 Xin Liu, Gongfa Li, Feng Xiang, Bo Tao, Guozhang Jiang
Human-centered smart manufacturing is an essential direction for the future development of manufacturing. Safe and reliable smart human-robot collaboration is the foundation for realizing human-centered smart manufacturing. Digital twin-based human-robot collaboration has been proposed as a new manufacturing paradigm to devise collaborative strategies, simulate collaborative processes, and ensure worker safety. Establishing a maturity model is essential to accurately assess the capabilities of the constructed human-robot collaboration digital twin. This paper aims to contribute to the formalization and standardization of the human-robot collaboration digital twin. It constructs a novel assessment framework for the overall maturity measurement of existing digital twin-based human-robot collaboration projects. The developed human-robot collaboration digital twin maturity model includes 5 evaluation dimensions and 24 evaluation factors. Additionally, 5 maturity levels and their definitions are defined for each evaluation factor for maturity scoring. The expert opinion aggregation approach is proposed to quantify the evaluation factor metrics and ultimately to obtain a maturity level for the human-robot collaboration digital twin. The effectiveness and feasibility of the proposed method are verified through a collaborative assembly case study. This paper provides a generic method for assessing the competency level of human-robot collaboration digital twins, which can provide insights into the maturity of digital twins for practitioners in the human-robot collaboration field to develop targeted strategies for optimizing and upgrading human-robot collaboration digital twins.
中文翻译:
基于专家意见聚合的决策支持,支持人机协作数字孪生成熟度评估
以人为本的智能制造是制造业未来发展的重要方向。安全可靠的智能人机协作是实现以人为本的智能制造的基础。基于数字孪生的人机协作已被提议作为一种新的制造范式,用于设计协作策略、模拟协作流程并确保工人安全。建立成熟度模型对于准确评估构建的人机协作数字孪生的能力至关重要。本文旨在为人机协作数字孪生的正规化和标准化做出贡献。它为现有基于数字孪生的人机协作项目的整体成熟度测量构建了一个新的评估框架。开发的人机协作数字孪生成熟度模型包括 5 个评价维度和 24 个评价因素。此外,还为成熟度评分的每个评估因素定义了 5 个成熟度级别及其定义。提出了专家意见聚合方法来量化评估因素指标,并最终获得人机协作数字孪生的成熟度水平。通过协同组装实例分析验证了所提方法的有效性和可行性。本文提供了一种评估人机协作数字孪生能力水平的通用方法,可以为人机协作领域的从业者提供对数字孪生成熟度的洞察,以制定针对性地优化和升级人机协作数字孪生的策略。
更新日期:2024-10-21
中文翻译:
基于专家意见聚合的决策支持,支持人机协作数字孪生成熟度评估
以人为本的智能制造是制造业未来发展的重要方向。安全可靠的智能人机协作是实现以人为本的智能制造的基础。基于数字孪生的人机协作已被提议作为一种新的制造范式,用于设计协作策略、模拟协作流程并确保工人安全。建立成熟度模型对于准确评估构建的人机协作数字孪生的能力至关重要。本文旨在为人机协作数字孪生的正规化和标准化做出贡献。它为现有基于数字孪生的人机协作项目的整体成熟度测量构建了一个新的评估框架。开发的人机协作数字孪生成熟度模型包括 5 个评价维度和 24 个评价因素。此外,还为成熟度评分的每个评估因素定义了 5 个成熟度级别及其定义。提出了专家意见聚合方法来量化评估因素指标,并最终获得人机协作数字孪生的成熟度水平。通过协同组装实例分析验证了所提方法的有效性和可行性。本文提供了一种评估人机协作数字孪生能力水平的通用方法,可以为人机协作领域的从业者提供对数字孪生成熟度的洞察,以制定针对性地优化和升级人机协作数字孪生的策略。