当前位置: X-MOL 学术J. Quant. Spectrosc. Radiat. Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A highly efficient Voigt program for line profile computation
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.jqsrt.2024.109234
Mofreh R. Zaghloul, Jacques Le Bourlot

Evaluation of the Voigt function, a convolution of a Lorentzian and a Gaussian profile, is essential in various fields such as spectroscopy, atmospheric science, and astrophysics. Efficient computation of the function is crucial, especially in applications where the function may be called for an enormous number of times. In this paper, we present a highly efficient novel algorithm and its Fortran90 implementation for the practical evaluation of the Voigt function with accuracy in the order of 106. The algorithm uses improved fits based on Chebyshev subinterval polynomial approximation for functions in two variables. The algorithm significantly outperforms widely-used competitive algorithms in the literature, in terms of computational speed, making it highly suitable for real-time applications and large-scale data processing tasks. The substantial improvement in efficiency positions the present algorithm and computer code as a valuable tool in relevant scientific domains. The algorithm has been adopted and implemented in the Meudon PDR code at Paris Observatory and is recommended for similar applications and simulation packages.

中文翻译:


用于线轮廓计算的高效 Voigt 程序



Voigt 函数(洛伦兹和高斯剖面的卷积)的评估在光谱学、大气科学和天体物理学等各个领域都是必不可少的。函数的高效计算至关重要,尤其是在函数可能被调用大量次的应用程序中。在本文中,我们提出了一种高效的新算法及其 Fortran90 实现,用于以 10-6 左右的精度对 Voigt 函数进行实际评估。该算法对两个变量中的函数使用基于 Chebyshev 子区间多项式近似的改进拟合。该算法在计算速度方面明显优于文献中广泛使用的竞争算法,使其非常适合实时应用和大规模数据处理任务。效率的大幅提高使目前的算法和计算机代码成为相关科学领域的宝贵工具。该算法已在巴黎天文台的 Meudon PDR 代码中采用和实现,并推荐用于类似的应用程序和仿真包。
更新日期:2024-10-30
down
wechat
bug