当前位置:
X-MOL 学术
›
J. Ind. Eng. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Basicity-tuned graphitic carbon nitride supported MgO heterogeneous catalysts for efficient transesterification of groundnut oil to biodiesel
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jiec.2024.11.024 Ashitha Kishore, K. Vignesh, Donato A.G. Aranda, R. Arun Prasath, Emerson Andrade Sales, B.M. Jaffar Ali
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jiec.2024.11.024 Ashitha Kishore, K. Vignesh, Donato A.G. Aranda, R. Arun Prasath, Emerson Andrade Sales, B.M. Jaffar Ali
Quality and quantity of biodiesel derived from oil depend on the type of feedstock and the transesterification process. To maximize biodiesel production efficiency and ensure the desired fuel quality, it is crucial to develop and optimize feedstock-specific production processes. This study reports on the transesterification of groundnut oil using a heterogeneous catalyst. Magnesium oxide (MgO) and its composites with graphitic carbon nitride (g-C3 N4 ) at 10, 30, and 50 wt% (MG10, MG30, MG50) were used. The composite catalyst combines basic sites from MgO and Lewis acid sites from the nitrogen atoms in the g-C3 N4 triazine unit, giving rise to synergistic effects that enhances biodiesel production. MgO nanoparticles were synthesized via precipitation, followed by calcination at 500 °C, and MgO/g-C3 N4 composites were prepared by grinding at different ratios. Morphological and structural studies confirmed material characteristics. BET analysis indicated an increased surface area of 71.39 m2 /g, enhancing catalytic activity, while SEM revealed the agglomerated g-C3 N4 and the cubic morphology of MgO. Response surface methodology was used to optimize catalyst loading, temperature, and reaction time parameters. The optimal conditions for biodiesel conversion using MG50 composite was determined to be methanol/oil ratio of 6:1, 2.5 wt% catalyst loading, 41.7 °C reaction temperature and spanning 52 min of reaction, yielding 94 % efficiency. GC–MS analysis confirmed successful transesterification, identifying key fatty acid esters such as ethyl oleate (34.72 %) and hexadecanoic acid methyl ester (7.69 %). This work supports further research into feedstock-specific catalysts for industrial biodiesel applications.
中文翻译:
碱度调整的石墨氮化碳负载 MgO 非均相催化剂,用于花生油与生物柴油的高效酯交换反应
从石油中提取的生物柴油的质量和数量取决于原料的类型和酯交换工艺。为了最大限度地提高生物柴油的生产效率并确保所需的燃料质量,开发和优化特定于原料的生产工艺至关重要。本研究报告了使用非均相催化剂对花生油进行酯交换反应。使用氧化镁 (MgO) 及其与 10、30 和 50 wt% 的石墨氮化碳 (g-C3N4) (MG10、MG30、MG50) 的复合材料。复合催化剂在 g-C3N4 三嗪单元中结合了 MgO 的碱性位点和氮原子的 Lewis 酸位点,从而产生协同效应,从而提高生物柴油的产量。通过沉淀合成 MgO 纳米颗粒,然后在 500 °C 下煅烧,并通过不同比例研磨制备 MgO/g-C3N4 复合材料。形态学和结构研究证实了材料特性。BET 分析表明表面积增加至 71.39 m2/g,催化活性增强,而 SEM 揭示了团聚的 g-C3N4 和 MgO 的立方形貌。响应面法用于优化催化剂负载、温度和反应时间参数。使用 MG50 复合材料进行生物柴油转化的最佳条件为 6:1 的甲醇/油比、2.5 wt% 的催化剂负载、41.7 °C 的反应温度和 52 分钟的反应时间,效率为 94%。GC-MS 分析证实酯交换反应成功,鉴定出关键脂肪酸酯,如油酸乙酯 (34.72%) 和十六烷酸甲酯 (7.69%)。这项工作支持对工业生物柴油应用中原料特异性催化剂的进一步研究。
更新日期:2024-11-15
中文翻译:
碱度调整的石墨氮化碳负载 MgO 非均相催化剂,用于花生油与生物柴油的高效酯交换反应
从石油中提取的生物柴油的质量和数量取决于原料的类型和酯交换工艺。为了最大限度地提高生物柴油的生产效率并确保所需的燃料质量,开发和优化特定于原料的生产工艺至关重要。本研究报告了使用非均相催化剂对花生油进行酯交换反应。使用氧化镁 (MgO) 及其与 10、30 和 50 wt% 的石墨氮化碳 (g-C3N4) (MG10、MG30、MG50) 的复合材料。复合催化剂在 g-C3N4 三嗪单元中结合了 MgO 的碱性位点和氮原子的 Lewis 酸位点,从而产生协同效应,从而提高生物柴油的产量。通过沉淀合成 MgO 纳米颗粒,然后在 500 °C 下煅烧,并通过不同比例研磨制备 MgO/g-C3N4 复合材料。形态学和结构研究证实了材料特性。BET 分析表明表面积增加至 71.39 m2/g,催化活性增强,而 SEM 揭示了团聚的 g-C3N4 和 MgO 的立方形貌。响应面法用于优化催化剂负载、温度和反应时间参数。使用 MG50 复合材料进行生物柴油转化的最佳条件为 6:1 的甲醇/油比、2.5 wt% 的催化剂负载、41.7 °C 的反应温度和 52 分钟的反应时间,效率为 94%。GC-MS 分析证实酯交换反应成功,鉴定出关键脂肪酸酯,如油酸乙酯 (34.72%) 和十六烷酸甲酯 (7.69%)。这项工作支持对工业生物柴油应用中原料特异性催化剂的进一步研究。