当前位置: X-MOL 学术Eng. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight into failure mechanisms of rainfall induced mudstone landslide controlled by structural planes: From laboratory experiments
Engineering Geology ( IF 6.9 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.enggeo.2024.107774
Kun Li, Ping Sun, Haojie Wang, Jian Ren

The role of structural planes in controlling mudstone landslides is a key issue in the study of geo-disasters in the Loess Plateau of China. In this study, the effects of sliding-control structures on the mechanisms of mudstone landslides are investigated via three model experiments with different slope structures. The results show that the hydrological response and failure mode of the experimental slope vary with the structural conditions. The vertical joints serve as preferential seepage paths, which accelerate rainfall infiltration, resulting in earlier responses of volumetric water content and pore water pressure. With the incorporation of vertical joints, the slope failure mode tends to transform from shallow failure to deep-seated failure. The presence of a weak interlayer leads to significant increases in the velocity and runout of the sliding mass. The variation in the slope failure extent and deformation characteristics with varying sliding-control structures further changes the temporal and spatial distributions of volumetric water content and pore water pressure. The different slope failure modes correspond to different sliding-control mechanisms, which are dominated by the types of structural planes and their interactions with hydrological responses. In the action of these mechanisms, pore water pressure and seepage force play significant roles in the reduction of effective stress and shear strength.
更新日期:2024-10-24
down
wechat
bug