当前位置:
X-MOL 学术
›
J. Transp. Geogr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inter-regional rail travel and housing markets connectedness between London and other regions
Journal of Transport Geography ( IF 5.7 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jtrangeo.2024.104044 I-Chun Tsai
Journal of Transport Geography ( IF 5.7 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jtrangeo.2024.104044 I-Chun Tsai
Taking London as a location with which to measure the ripple effect in the UK housing market, this study aims to explain and verify the high degree of correlation between inter-regional transportation and the regional correlation of the housing market. Based on the literature on the relationship between short-term mobility and long-term migration, this paper illustrates that the extent to which people use trains for travel across regions will be related to the ripple effect in the regional housing markets. Frequent railway transport behavior, whether for commuting or traveling, might increase people's desire to relocate between regions, and thus leading to information transmission effects across regional housing prices and transaction volume. First, we estimate a dynamic indicator for the ripple effect. Then, the empirical tests use panel data, including the ripple indicator and passenger number data across time (1996–2022) and regions (nine regions). It is found that if London house prices drive other regional house prices to rise, inter-regional transportation demand will increase, and in turn, the increase of house prices in other housing markets will again drive up London house prices. The number of passengers will affect the information transmitted by the housing market transaction volume in other regions to the London housing market. This implies that higher inter-regional transport needs may lead to migration between London and other property markets, causing their transaction volumes to change in the same direction. The results of this paper verify that travel behavior between regions is a crucial factor in the leading/lagging behavior of regional housing market performance, implying a relationship between short-term travel and long-term migration. The results also indicate that incorporating variables of housing market correlations may help in the prediction of passenger numbers or transportation demand.
中文翻译:
伦敦与其他地区的区域间铁路旅行和住房市场联系
本研究以伦敦为衡量英国房地产市场连锁反应的地点,旨在解释和验证区域间交通与住房市场区域相关性之间的高度相关性。本文基于关于短期流动性和长期迁移之间关系的文献,表明人们使用火车进行跨地区旅行的程度将与区域住房市场的连锁反应有关。频繁的铁路运输行为,无论是通勤还是旅行,都可能增加人们在不同地区之间迁移的意愿,从而导致区域房价和交易量之间的信息传递效应。首先,我们估计涟漪效应的动态指标。然后,实证检验使用面板数据,包括跨时间(1996-2022 年)和地区(九个地区)的涟漪指标和乘客人数数据。研究发现,如果伦敦房价带动其他地区房价上涨,跨区域交通需求就会增加,反过来,其他房市房价的上涨也会再次推高伦敦房价。乘客数量会影响其他地区住房市场交易量向伦敦住房市场传递的信息。这意味着更高的区域间运输需求可能导致伦敦和其他房地产市场之间的迁移,从而导致它们的交易量向同一方向变化。本文的结果验证了地区间的旅行行为是区域住房市场表现领先/滞后行为的关键因素,这意味着短期旅行和长期迁移之间存在关系。 结果还表明,纳入住房市场相关性的变量可能有助于预测乘客数量或交通需求。
更新日期:2024-11-01
中文翻译:
伦敦与其他地区的区域间铁路旅行和住房市场联系
本研究以伦敦为衡量英国房地产市场连锁反应的地点,旨在解释和验证区域间交通与住房市场区域相关性之间的高度相关性。本文基于关于短期流动性和长期迁移之间关系的文献,表明人们使用火车进行跨地区旅行的程度将与区域住房市场的连锁反应有关。频繁的铁路运输行为,无论是通勤还是旅行,都可能增加人们在不同地区之间迁移的意愿,从而导致区域房价和交易量之间的信息传递效应。首先,我们估计涟漪效应的动态指标。然后,实证检验使用面板数据,包括跨时间(1996-2022 年)和地区(九个地区)的涟漪指标和乘客人数数据。研究发现,如果伦敦房价带动其他地区房价上涨,跨区域交通需求就会增加,反过来,其他房市房价的上涨也会再次推高伦敦房价。乘客数量会影响其他地区住房市场交易量向伦敦住房市场传递的信息。这意味着更高的区域间运输需求可能导致伦敦和其他房地产市场之间的迁移,从而导致它们的交易量向同一方向变化。本文的结果验证了地区间的旅行行为是区域住房市场表现领先/滞后行为的关键因素,这意味着短期旅行和长期迁移之间存在关系。 结果还表明,纳入住房市场相关性的变量可能有助于预测乘客数量或交通需求。